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Abstract

Information or data fusion is one of the solutions adopted for improving the per-
formance of a pattern recognition system. Information can be gathered either from
multiple data sources or through the use of multiple representations generated from
a single data source. A single representation summarizes the information and pro-
vides a single cue on the data, and thus may not be able to fully reveal the inherent
characteristics of the data. In visual recognition, image representations are gener-
ally categorized into global and local based types. A global representation captures
features corresponds to some holistic characteristic in the image, and produces a
coarse representation. Differently, a local representation reveals detail variations
and traits inherent to the image. Psychological findings have shown that humans
equally rely on both local and global visual information. Moreover, there is a large
agreement in literature that the combination of different features, i.e. a multiview
perspective, can have a positive effect on the performance of a pattern recognition
system. In fact, different features can represent different and complementary char-
acteristics of the data; in other words, each feature set represent a different view on
the original dataset. Thus it is expected that a visual recognition system can benefit
from different representations (both local and global) through the use of information
fusion.

Information can generally be consolidated at three different levels: (i) decision
level; (ii) match score level; and (iii) feature level. In the literature match level and
decision level fusion (i.e. combining the output of different classifier, each of them
working on different feature sets) have been extensively studied, whereas feature
level fusion is a relatively understudied problem because of the difficulties inherent
to its correct implementation. Feature level fusion may incorporate redundant, noisy
or trivial information and the concatenated feature vectors may lead to the problem
of curse of dimensionality. In addition, the feature sets may not be compatible
and relationship between different feature spaces may not be known. Moreover,
this integration comes at a cost, which may incur in units of time, computational
resources or even money. Nevertheless, it is thought that fusing features at this level
would still retain a richer source of discriminative information.

Motivated by the belief, this thesis investigates the use of feature level fusion and
its correlation with feature selection and classification tasks for two recent pattern
recognition problems. These include the classification of six types of HEp2 staining
patterns and the automatic verification of kinship relations in a pair of face images.
several image attributes are proposed, that are better capable of characterizing the



different kind of images associated with the two said classification tasks. Feature
level fusion of the different attributes is performed followed by a careful reduction of
features, through the use of pertinent feature selection and classification algorithms,
that decide the most representative and discriminative feature sets for the patterns to
classify. Results indicate that the proposed techniques working on the combination
of features of different natures, which are capable of describing the data under
different perspectives, is an effective strategy in achieving higher accuracy.
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Chapter 1

Introduction

1.1 Introduction and Motivation

Pattern recognition systems automatically recognize patterns in sensed data. A
pattern recognition system design deals with the mathematical and technical aspects
of determining facts from sensor data. Typical components of a pattern recognition
system are data acquisition, preprocessing, feature extraction and selection and
classification.

Pattern recognition applied to large-dimensional data, as those typical in com-
puter vision and pattern recognition applications, requires the extraction of features
capable of summarizing the information to be analyzed. The choice of the most
suited feature extraction algorithms is very crucial for the design of a robust pat-
tern recognition system. In general, feature extraction plays a key role in any pattern
classification task. At this stage, a proper representation is chosen to make the sub-
sequent processing not only computationally feasible but also robust to possible data
variations. A single or unimodal representation utilizes information obtained from
a single cue on the data. Every representation has an upper bound on performance
(or lower bound on its error rates) due to its inherent characteristics even when op-
erating in a constrained environment. The performance of the system can only be as
good as that of this unimodal representation itself. Thus a single representation may
not be able to fully capture all the characteristics of the data. A good representation
should be well equipped to handle noise in real world data which may be caused
during the data acquisition process. Furthermore, it should be capable of revealing
significant inter-class variation while exhibiting minimal intra-class variation. How-
ever in reality, it is unlikely that a single image modality is capable of providing
all these properties, due to its inherent limitations and real world constraints like

1



1 – Introduction

environmental conditions.

Broadly speaking, image representations can be categorized into two general
types: global-based and local-based. A global based representation produces fea-
tures that correspond to some holistic characteristic in the image, where each di-
mension of the feature vector contains the information embodied in every part (or
pixel) of the image. It is proper to use global features for coarse representation. On
the other hand, in a local based representation the features reveal and capture more
detailed variations and traits within some local image regions. Local features are
often used for finer representation. Global features can be revealed by several sub-
space based methods including the state of the art automatic methods like Principal
component Analysis (PCA) and Linear Discriminant Anaylsis (LDA) for feature ex-
traction. Similarly, local features for images can be acquired using some well known
techniques like Gabor filters [125] and Local binary patterns (LBP) [70]. Many
global and local representations have been proposed in the literature, but it still
remains an open research problem that what is the most suitable representation for
a particular pattern recognition task. However, psychological findings show that
humans equally rely on both local and global visual information [32]. Put differ-
ently, global and local features play different roles in the process of visual perception
and recognition; and therefore, it is natural to expect better performances by fusing
together appropriate global and local information.

In fact different features can represent different and complementary characteris-
tics of the data; in other words, each feature set represent a different view on the
original dataset. Understanding which features can be more effective in tackling a
specific computer vision or a pattern recognition problem is a very difficult task,
but there is a large agreement in the literature that the combination of different
features, i.e. a multiview perspective, can have a positive effect. Tanaka et al. [34]
suggests that natural vision-based classification tasks are performed better when
multiple visual cues can be combined to reduce ambiguity. Thus, we expect that
by combining multiple cues (in the form of global or local information) through an
integration scheme, we will achieve a better performance, i.e., higher classification
performance and higher robustness.

In the computer vision and pattern recognition literature some authors have sug-
gested different methods to combine or fuse information derived from different cues.
Either way, fusing information may provide increased interpretation capabilities and
more reliable results since data with different characteristics and complementary in-
formation is combined. In general, data fusion techniques can be classified into three
different levels according to the stage of processing at which the fusion takes place;
feature level, match score level and decision level. They are also respectively cate-
gorized as low-level, mid-level and high-level integration. It is believed that pattern

2



1.1 – Introduction and Motivation

recognition systems that fuse data at an earlier stage (such as feature level) will
outperform those which fuse data at latter stages. This is because the data at lower
levels have richer proportions of information about the class or the identity [33].

Having said that, however, an approach with feature level fusion needs to face
several issues. First, directly encoding the multiple features can result in incorpo-
rating redundant, noisy or trivial information, which can seriously affect the per-
formances of the recognition process. Second, the integration of multiple feature
sets increase the number of variables used to represent the original data, and the
concatenated feature vectors may lead to the problem of curse of dimensionality.
Third, different modalities can have varying (sometime unknown) confidence levels
in accomplishing different tasks, multiple modalities may have incompatible feature
sets and the relationship between different feature spaces may not be known. Fi-
nally, the integration of multiple features comes at a cost, which may incur in units
of time, computational resources or even money.

In order to achieve gain in performances through fusing information at feature
level, we have to be equally careful to deal with the problems it carries. Provided
that we can increase the number of features by extracting and integrating the right
combination of global and local features, thereby increasing the heterogeneity of the
feature vectors, the performance of a pattern recognition system is likely to boost.
However, in reality, it reaches a maximum and then starts to degrade, suggesting
that the final vectors may suffer from the ‘peaking phenomenon’or as the ‘curse
of dimensionality’. Primarily, the use of dimensionality reduction techniques can
mitigate the ‘curse of dimensionality’along with the reduction of computational time
and measurement cost. Nevertheless, care should be taken in this practice as an
excessive reduction in the number of features may result in the loss of discriminative
capability of the feature set and thereby reducing the accuracy performance of the
pattern recognition system. Ugly duckling theorem [31] emphasizes the importance
of selecting the right set of uncorrelated and discriminative features, as it is possible
to incorrectly classify two different patterns as belonging to the same class if their
feature sets have a sufficiently large number of redundant features.

At this stage, dimensionality reduction can be performed in two different ways. It
can be achieved through a feature extraction algorithm that transforms the existing
fused features into a lower dimensional space, where the classification task is made
easier. In other words, creating a subset of new features by combinations of the ex-
isting features. In this regard, several linear (e.g., PCA or LDA) or non-linear (e.g.,
Subclass Discriminant Analysis, SDA [54]) dimensionality reduction techniques can
be put to use. Secondly, the dimensionality can be reduced using a feature selection
scheme, where a subset of the existing features is selected without a transformation.
Feature selection, also called feature subset selection (FSS), looks at the issue of

3
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dimensionality reduction from a different perspective. It selects a minimal set of rel-
evant features that contains maximum discriminatory information while eliminating
the irrelevant and noisy ones. It may be necessary in a number of situations where
features may be expensive to obtain or one may want to extract meaningful rules
from a classifier. In addition, it may provide improved generalization capabilities
and reduced complexity and run-time.

Feature selection algorithms fall into two general categories: wrappers and fil-
ters. While wrappers select features in combination with a learning process, filters
are independent from a learning algorithm. Usually wrappers provide the best per-
forming feature set for a particular type of model; nevertheless, they tend to be
slow and thus may not scale to larger datasets with many features. To design an
efficient and low cost feature selection algorithm, which is scalable to big datasets
with larger feature sets, some works have suggested the combination of filter and
wrapper based methods. Peng et al. [74], proposes a filter based feature selection
method to select relevant features according to the maximal statistical dependency
criterion based on mutual information. They further suggested the use of an efficient
two-stage feature selection algorithm, by combining their filter based method with
wrapper based feature selectors, to identify a compact set of features that leads to
superior classification performance.

Compared to the abundance of research related to fusion at decision or match
score level (i.e. combining the output of different classifier, each of them working
on different feature sets), fusion at the feature level is relatively understudied prob-
lem, mainly due to its intrinsic difficulties. Nevertheless, it is believed that feature
level fusion contains a rich amount of discriminative information. Given the said
motivations, this thesis work exploits several single feature attributes, its fusion at
feature level, and its correlation with suitable feature selection and classification
algorithms to investigate two vision-based classification problems. These include a
multi-classification task to categorize six types of cell images and a two-class problem
to automatically identify kin or not-kin relation in pairs of face images.

Here, we first briefly introduce these two classification problems related to pat-
tern recognition and computer vision domains and then provide key highlights to
our research contributions, which are discussed in details in the relevant sections of
the thesis.

Classification of HEp2-Cells: Human Epithelial (HEp-2) cells are commonly
used in Indirect Immunofluorescent (IIF), a standard medical test, for the diagnosis
of several autoimmune disorders. The specialist observes images, containing cultured
cells of the HEp-2 cell line, acquired under a fluorescence microscope and makes a
diagnosis based on two things i) on the perceived intensity of the fluorescence signal,
that can either be negative, intermediate or positive, and ii) secondly on the type

4



1.1 – Introduction and Motivation

of the staining pattern. The task of the expert is to decide whether there are some
symptoms of disease in the patient’s serum or not. This decision is made according
to visual patterns, also called staining patterns, of all cells in the image. Literature
describes six main fluorescent patterns that are here reported for both positive and
intermediate levels of intensity. They are homogeneous, nucleolar, speckled (coarse
and fine), centromere, and cytoplasmic respectively. Their correct description is
fundamental for the differential diagnosis of the pathologies. The manual technique,
based on human visual inspection, is time-consuming, subjective and dependent on
the operator’s experience. The idea here is to automate the process which may be
a solution to these limitations, making the process faster and more reliable.

Kinship Verification: Automatic Kinship verification aims at recognizing the
degree of kinship of two individuals from their facial images. In other words, when
analyzing the facial images of two individuals, the computer must tell whether those
subjects are related or not. Different degrees of kinship might be detected, such as
grandparent-child, parent-child, siblings and so on. Unlike typical face verification,
Kinship verification aims at identifying similar features between two different indi-
viduals. This is a challenging task since it has to deal with differences in age and
gender between subjects. Additionally, it has to cope with the unpredictable amount
of genetic information shared by relatives that reflect into individuals, showing dif-
ferent degrees of facial similarity. Many other difficulties arise when Kinship Veri-
fication must be applied to databases acquired under unconstrained environments.
Kinship Verification has potential applications in image retrieval and annotation,
forensics and historical studies.

Our work aimed at performing a comprehensive exploration of feature level fu-
sion for the two recent and important image classification problems with several
pattern recognition techniques. A brief discussion of the main contribution of our
work is following. First, we suggest a set of features that are capable to correctly
describe the images. For the cell classification problem, we propose a set of fea-
tures to characterize cell images that are highly discriminative with respect to their
fluorescence patterns. In particular, we investigated image attributes derived from
morphological, global and local texture analysis. Similarly, for kinship verification,
we identified several facial attributes more fit to tell kins from not kin-pairs; these
attributes are derived from different geometric and both local and global textural
data of the face images. For both the problems, feature sets are obtained through
a detailed analysis of single image attributes, as well as of their integration at the
feature level, and of the selection of the most relevant feature variables. For the cell
classification problem, we propose a combination of a features selection process and
of a discriminant analysis that allows effectively in reducing the high dimensionality
of the data, and at the same time coping with the high intra-class variance of the
samples. These include Minimum-Redundancy Maximum-Relevance methodology
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(mRMR) [74] as the feature selection algorithm and Subclass Discriminant Analy-
sis (SDA) [54], to overcome the limitations of the traditional LDA approach. The
classification is based on k-Nearest Neighbour (k-NN) algorithm. Differently, for
kinship verification task, a kin image pair classification is based on Support Vec-
tor Machines (SVM) [19] along with the integration of a robust two-step feature
selection algorithm. The feature selection is a combination of a filter and wrapper
based method i.e., respectively based on mRMR and Sequential Forward Selection
(SFS) [24] algorithms. The results of our experiments show that the combination of
features, at the feature level, of different nature provides higher performance than
when the features are used individually. In addition, the higher the heterogeneity
of the features used, the better the performance. More importantly, the use of a
proper feature selection scheme or a feature transformation or both along with the
choice of a suitable classifier is crucial in case of feature level fusion, which is likely
to boost the classification performance of the pattern recognition system.

1.2 Thesis Organization

This thesis is structured as follows. Chapter 2 provides an overview of the work
related to data fusion in general and feature level fusion in specific. Chapter 3 first
introduces the HEp2 cells classification problem and provides related work. It then
presents our proposed method conducting the detail analysis of several suitable fea-
tures attributes and their combination capable of describing HEp2 staining patterns
along with the use of pertinent feature selection and classification algorithms and
their rationale. This chapter also includes a preliminary work on HEp2-cell segmen-
tation. In Chapter 4 we first give an introduction to Kinship Verification and the
relavant related works. This is followed by work that shows the significance of a
proposed method to automatically discriminate Parent-Child pairs by providing a
detailed discussion of several experimental results. Kinship verification is revisited
in Chapter 5, with the introduction of a new set of features capable of performing
well in an unconstrained environment. Finally, conclusions are drawn in Chapter 6.
This structure of the thesis was adopted to maintain coherence with the chronology
of the work developed.
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Chapter 2

Background and Literature
Review

Generally speaking, the phrase information fusion includes any area which deals
with exploiting a combination of different sources of data and knowledge, either to
generate a single representational format or to reach a decision. In biometrics or
visual information processing, information fusion involves the synergistic combina-
tion of data from multiple sources (sensors) or multiple feature representations to
provide more reliable and accurate information. In other words, inadequacies in the
data can be complemented by data from other sources or through different represen-
tations of the same data. A fusion system should integrate data in such a way that
it remove the influence of conflicting or irrelevant data, increase the interpretation
of data, and thereby accurately and concisely represents the original information.
Provided that a proper choice of the fusion method is made for the kind of data,
and is performed correctly, the system should become less sensitive to noise and its
performance is likely to boost.Pioneering work on the subject related to multi-sensor
fusion can be traced back to the early 80s [100, 98, 99]. In literature, information
fusion for a pattern recognition system can occur at three different levels; namely
feature level, match or score level and decision level. They can also be respectively
called as low level, mid level and high level fusion. Table 2.1 gives a brief comparsion
of the fusion levels.

Decision level fusion is a high level fusion, which refers to the combination of
accept/reject decisions already taken by the individual classifiers operating on mul-
tiple data or different representations of the single source data. In order words,
separate feature extraction and selection would be performed for the original data
sources and then passed to their respective classifiers to make accept/or reject deci-
sions. Finally, the multiple decisions are combined to arrive at the final classification
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2 – Background and Literature Review

Table 2.1: A comparsion of the three fusion levels

Characteristic Decision Level Score Level Feature Level
Information content low moderate rich

Efficiency low medium high
Difficulty of realization small moderate large

decision. This can also be termed as post-classification fusion or mixture of experts.
There are a number of methods to combine these accept/reject decisions in order to
converge on a final classification decision. These include Majority voting, behavior
knowledge space, and weighted voting based on Dempster-Shafer theory of evidence.
A more detailed description of the methods can be found in [102]. Decision level
fusion has been utilized in a number of applications, a significant number of which
are related to multi-modal biometrics [104, 105, 106, 107, 108, 109, 110]. Fusion
at the decision level is considered to be too rigid since only a limited amount of
information is available at this level; therefore, in most cases it does not provide a
substantial increase in performance [101].

Match score level fusion, also termed as a measurement or confidence level fusion,
refers to the combination of matching scores provided by different classifiers. These
classifiers are trained separately using different feature sets; feature sets can be
obtained either through multiple representations in a unimodal system or using
mulitple source of data in a multi-modal system settings. The match scores can be
merged in number of ways like the max rule, min rule, sum rule, mean rule, median
rule, etc [103]. Ross et al. [101] use decision trees and linear discriminant classifiers
for combining multiple match scores. Fusion at this level requires a moderate level
of processing in order to achieve an appropriate level of system performance. In
literature, score level fusion is utilized by a large number of applications including
both uni-modal and multi-modal biometric applications [136, 114, 111, 112, 113,
115, 116, 117, 118].

Feature level fusion uses features sets generated separately from different feature
extraction algorithms on the same or separate datasets, which are fused together to
produce a single representation of the system. A common way to fuse the features
sets is to simply concatenate them to form a single feature vector [119, 121, 123],
although for some data representations a single resultant feature vector can be cal-
culated as a weighted average of the individual feature vectors e.g., features obtained
from data of identical sensors. Incompatible feature sets, where there are differences
in the range of values and distribution of the individual feature vectors, needs to
be normalized before concatenation. The combined feature sets can be used in-
stead of the original data for further processing. The new feature vector now has
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a higher dimensionality and represents the input data in a different, and hopefully
more discriminating, hyperspace. Nevertheless, fusion at the feature level is hard to
achieve in practice because of the following reasons: (i) the feature sets from multi-
ple modalities/representations may not be compatible; (ii) the relationships between
these feature sets in a hyperspace may not be known; (iii) the integration of multi-
ple feature sets increase the number of variables used to represent the original data,
resulting in a feature vector with very large dimensionality leading to the ‘curse of
dimensionality’ problem; and (iv) the combination of multiple features comes at a
cost, which may incur in units of time, computational resources or even money.

In order to mitigate the problems associated with feature level fusion, the proper
choice of a feature selection and/or a transformation algorithm is crucial for the
performance of a pattern recognition system. Thus subsequent steps may include
feature reduction techniques, based on feature selection and transformation, before
sending the feature vector to the decision or classification module. A feature trans-
formation transforms the existing fused features into a lower dimensional space,
where the classification task is made easier. This may include linear (e.g., PCA or
LDA) or non-linear (e.g., Subclass Discriminant Analysis, SDA [54]) feature transfor-
mation techniques. On the other hand, a feature selection process selects a minimal
set of relevant features that contains maximum discriminatory information while
discarding many redundant or irrelevant features. It can be performed either prior
or after the fusion to extract useful features from the larger set of features.

In general, feature selection is an important problem for many pattern classi-
fication systems e.g. bioinformatics and object recognition. Although, some clas-
sification algorithms have an inherent ability to select and use relevant variables
[25], feature selection algorithms in general can be categorized in two broader types:
wrappers and filters. Wrappers use a learning algorithm to evaluate the usefulness
of features [126, 128, 127]. They employ cross validations scheme to estimate the
accuracy of the feature subsets, and usually provide the best performing feature set
for that particular type of model. A disadvantage is that they tend to very slow and
do not scale to big datasets with larger feature sets. Differently, filters [130, 74, 129]
evaluate features according to heuristics based on general characteristics of the data.
They work independently from a learning process and provide a ranking on the fea-
ture variables. Thus computationally efficient they can be applied to huge datasets
with larger feature sets. Peng et al. [74], proposes an efficient filter based feature
selection method to select relevant features according to the maximal statistical de-
pendency criterion based on mutual information. Further they suggest the use of a
two-stage feature selection algorithm by combining their filter algorithm with other
wrapper based methods, to identify a compact set of features that leads to better
classification accuracies.
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While feature fusion at high levels, match score and decision levels, has been
extensively studied in the literature, fusion at the feature level is a relatively under-
studied problem. Although, integrating feature at the lower level is hard to achieve
due to its intrinsic difficulties, information fusion at the feature level is believed
to the best type of fusion. It is expected to provide better recognition results than
other levels of fusion since the feature sets contain richer source of information about
the input data than the fusion at the match score or decision level [113]. There
is some work on fusing different biometric modalities at feature level (e.g. Hand
and Face [119], ear and profile face [120]), but some studies concentrate on fusing
different representations of a single underlying modality (e.g. Gender Classification
[121], multi-feature fusion using subspace learning [122], 3D Face recognition [135],
cell image classification [51]). Our work belongs to this category fusing different
representations of a single underlying modality.

Selecting appropriate and complementary component features, carrying discrim-
inant information about the input data and are resistant to all kind of variations,
is crucial for good performance and is still an open research area. In image clas-
sification tasks, treating images the way humans do, image representations can be
categorized into two general types. A global representation depicts the general and
holistic characteristics of the image and is often used for a coarse representation. On
the other hand, a local representation captures local features and encodes more de-
tailed variations within some local image regions, resulting in a finer representation.
Although many successful image representation methods based on global or local
features have been proposed (PCA [124], Gabor features [125], Local binary pat-
terns [70]), it remains an open problem that what is the most suitable representation
for a particular pattern classification task. However, in the literature psychological
findings have shown that both global and local features are crucial for visual in-
formation perception [32]. In other words, both play different roles in the visual
perception and recognition; therefore it is essential to fuse them together in a smart
way.

In this thesis we target image classification problems which involve the computer
processing of images; simulating how humans would process and understand images.
To this purpose, we utilize data fusion, since psychological studies (e.g., Tanaka et
al. [34]) suggest that natural vision-based classification tasks are performed better
when multiple visual cues can be combined to reduce ambiguity. More specifically,
we are interested in exploiting feature level fusion together with feature selection and
transformation procedure to elicit a minimal feature set from the high-dimensional
feature vector, for two recent pattern recognition problems. This includes a multi-
class problem of HEp2 staining patterns classification and a two-class problem to
automatically recognize kin-relations from pairs of face images. In both studies,
we choose the most relevant and complementary component features for the tasks.
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For the staining pattern classification, we run feature selection based on minimum-
Redundancy- Maximum-Relevance (mRMR) algorithm [74] and perform feature
transformation based on Subclass Discriminant Analysis (SDA) [54]. The classifi-
cation of the final vectors is performed by k-Nearest Neighbour (k-NN). Differently,
for kinship verification problem, we perform a two-step feature selection algorithm
based respectively on mRMR and Sequential Forward Selection (SFS) algorithm
[24]. The classification is based on SVM [19]. In our work, we validate our claims
to utilize feature level fusion for the two said applications by conducting several
experiments and by providing comparisons to existing approaches.
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Chapter 3

Classification of HEp2 Staining
Patterns in Indirect
Immunofluorescence Images

Classifying HEp-2 fluorescence patterns in Indirect Immunofluorescence (IIF) HEp-
2 cell imaging is important for the differential diagnosis of autoimmune diseases.
The current technique, based on human visual inspection, is time-consuming, sub-
jective and dependent on the operator’s experience. Automating this process may
be a solution to these limitations, making IIF faster and more reliable. This work
proposes a classification approach based on Subclass Discriminant Analysis (SDA),
a dimensionality reduction technique that provides an effective representation of the
cells in the feature space, suitably coping with the high within-class variance typical
of HEp-2 cell patterns. In order to generate an adequate characterization of the
fluorescence patterns, we investigate the individual and combined contributions of
several image attributes, showing that the integration of morphological, global and
local textural features is the most suited for this purpose. The proposed approach
provides an accuracy of the staining pattern classification of about 90%.

A preliminary version of this work is presented in [55], where we first analysed
the use of SDA to approach the staining pattern classification problem, using textu-
ral descriptors based on Gray-Level Co-occurrence Matrices (GLCM) and Discrete
Cosine Transform (DCT). Here we present a deeper insight into the problem aimed
at obtaining a better characterization of the staining patterns and a larger set of
experiments supporting our findings.

The rest of the chapter is organized as follows. An introduction to the Problem
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and related research work is presented in section 3.1. After providing a full charac-
terization of the HEp-2 image dataset in Section 3.2, in Section 3.3 we present the
main steps of our proposed solution. In Section 3.4 we describe the experimental
protocol and in Section 3.5 we show and discuss our experimental results. Finally a
preliminary work on cell segmentation is provided in Section 3.6.

3.1 Introduction and Related Work

Indirect Immunofluorescence (IIF) is a widespread microscopy imaging technique for
the detection of antinuclear auto-antibodies (ANA), which can reveal the presence
of important autoimmune pathologies such as systemic rheumatic diseases, multiple
sclerosis and diabetes [35]. The ANA-screening is typically performed by visually
inspecting cultured cells with a fluorescence microscope. The patient’s serum is first
dispensed on a HEp-2 cell substrate and then diluted and incubated. The auto-
antibodies of the serum selectively bond with specific antigens on the substrate and
are finally revealed by a fluorescence tag.

The specialists usually perform a three-step analysis. First, the slide is validated
by checking the presence of at least one fluorescence mitotic cell. Second, the in-
tensity of fluorescence signal is evaluated according to three levels: negative (i.e.
absence of fluorescence), intermediate or positive. Finally, the cells of the interme-
diate and positive slides (Figure 3.1) are classified on the basis of the pattern of the
fluorescence signal, which in turn reveals the auto-antibody type. According to liter-
ature, the different staining patterns can be classified into six main groups, namely
centromere, homogeneous, nucleolar, coarse speckled, fine speckled and cytoplasmatic
(see Figure 3.2).

Figure 3.1: HEp-2 IIF images with positive (left) and intermediate (right) fluores-
cence intensity.

The accurate classification of the staining patterns is very important for dif-
ferential diagnosis, since different patterns are associated with different types of
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Figure 3.2: six types of staining patterns with positive and intermediate intensity
levels.

autoimmune diseases. Nevertheless, in the standard practice this process suffers
from intrinsic limitations related to the visual evaluation performed by human sub-
jects. The analysis of large volume of images is a tedious and time-consuming task
and requires highly trained and specialized personnel. Moreover, human evaluation
for this type of screening is affected by very high inter laboratory variability (up to
24%, as reported in [36, 37]). This has tremendous impact on the reliability and
reproducibility of the obtained results.

Computer-Aided Diagnosis (CAD) systems may overcome these limitations and
effectively support the decision of the specialists. In particular, the automation of
the staining pattern classification process may considerably reduce the time and
effort required by the analysis and, at the same time, improve its repeatability. This
would make IIF analysis easier, faster and more reliable.

In the recent years, the computer analysis of IIF images has attracted many re-
searchers from the Pattern Recognition community proposing novel contributions to
the different aspects of the analysis process. Yet, compared to the advancement in
other medical imaging techniques, the automatic analysis of Indirect Immunofluo-
rescence (IIF) images has not yet reached to a significant level of performance. Trig-
gered by a growing demand for reliable CAD systems, recent research has proposed
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solutions for all the major steps of IIF analysis, including methods for (i) the auto-
mated segmentation of the HEp-2 cells [38, 39, 40], (ii) the recognition of the mitotic
cells in the slides [41, 42], (iii) the quantification of fluorescence intensity [43] and (iv)
the automated classification of the staining patterns [44, 45, 46, 47, 48, 49, 50]. In
particular, most of the recent efforts are focused on the latter task and the proposed
classification schemes span the entire spectrum of machine learning (e.g., learning
vector quantization [44], decision tree induction algorithms [45, 46], support vec-
tor machines [49], random forests [50], self-organizing maps [48] and multi-expert
systems [47]). The image attributes used to characterize the fluorescent patterns in-
clude several types of descriptors, with special focus on morphological and textural
features [51, 52].

In spite of the recent extensive research, the accurate classification of the stain-
ing patterns still remains a challenge. Moreover, the comparison of the solutions
presented in the literature is extremely difficult because they are based on different
datasets and different experimental protocols. A growing interest to the computer
analysis of Immunofluorescence (IIF) images has led to the organization of the first
HEp-2 Cell Classification Contest by the International Conference on Pattern Recog-
nition (ICPR2012), for a comparative evaluation on a common database. With the
release of a public dataset of HEp-2 cell images [53], a Special Issue of the Pat-
tern Recognition journal was dedicated on the Analysis and Recognition of Indirect
Immunofluorescence Images. It was aimed at providing a more comprehensive as-
sessment of the state of the art in the field of the staining pattern classification and
simultaneously bounding the researchers to a standardized experimental procedure
enabling the direct comparability of different approaches. Here we briefly overview
the works published on the Special Issue.

Faraki et al.[86]: Each cell image is represented through the covariance descrip-
tor (CovD), where it is assumed that data lie on a known Riemannian manifold of
symmetric, positive definite matrices. The underlying principal here is that data is
inherently non-Euclidean, and disregarding this geometrical structure can lead to
suboptimal results. As compared to normal bag of words (BoW), a bag of Rieman-
nian words (BoRW) is based on non-Euclidean Riemannian manifolds which encode
the geometry of the signatures by exploiting the distribution of the signatures. A
multi-class SVM is used for classification.

Kastaniotis et al.[95]: combine two descriptors based on gradient and textural
characteristics. A SIFT based rotation invariant representation is utilized to en-
codes local gradients. A new descriptor, Gradient-Oriented Co-occurrence of LBP
(GoC-LBP), is proposed to evaluate the orientation of the local gradient in the
neighborhood of each pixel. Classification is performed in the dissimilarity space by
using an approach based on discriminative sparse representations.
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Kazanov et al.[91]: uses morphological features to capture the structural content
of the stained regions inside the cell, and is achieved through a multi-threshold
binarization technique. Here, two multi-class SVM classifiers are trained separately
for the classification of the positive and the intermediate intensity levels.

Nosaka et al.[90]: proposes a new textural descriptor based on traditional LBP,
Rotation Invariant Co-Occurrence among adjacent LBP (RIC-LBP). The training
set is extended by generating synthetic images, rotating the original ones by various
angles, with the purpose to deal with global rotations of the cells. Multi-class SVM
remains the choice for the staining pattern classification.

Shen et al.[92]: proposes the integration of a recent descriptor, Multi support
Region Order-Based Gradient Histogram (MROGH), within the bag of words frame-
work. The classification is performed through a traditional multi-class SVM.

Snell et al.[93]: The authors compare four different texture-based descriptors:
DCT, pixel difference statistics at different scales, morphological features and Gray-
Level Co-occurrence Matrix and show how the performance of a cell-level classifier
could be improved by analyzing the full distribution of cell parameters within a
patient sample. The classification has been performed by employing a multi-class
SVM with RBF kernel, whose parameters are determined by a grid search, and a
comparison between the different features sets is performed.

Stoklasa et al.[94]: The method combines different sets of features namely Haral-
ick features, Local Binary Patterns, SIFT, surface description and a granulometry-
based descriptor. For each descriptor a separate distance is computed and the
aggregated distance is computed as a linear combination of the basic descriptor dis-
tances. Within a framework of k-NN classification this aggregated distance is used
to label the query object.

As compared to hand-coded descriptors Wang et al.[89] [30] proposes a method
to learn the descriptors from the image data itself. The feature vectors are locally
clustered and for each local region the most representative descriptors are selected
by partial least squares (PLS). A BoF model is applied on each region and a code-
book is extracted for each of them. The final representation of the cell image is
obtained by the concatenation of the codewords obtained from these codebooks.
The classification task is performed by using a multi-class SVM.

Wiliem et al.[96]: proposes a new framework for the classification of HEp-2 cell
images, namely the Cell Pyramid Matching (CPM), based on the combination of
regional histograms of visual words and of the Multiple Kernel Learning (MKL)
framework.

Xiangfei et al.[88]: utilizes texture and gradient features based respectively on

17



3 – Classification of HEp2 Staining Patterns in Indirect Immunofluorescence Images

response filter banks and the HOG descriptor. The dimensionality of the feature
vector is reduced through PCA. Dictionary learning is performed according to a
novel technique, and then it is used for the sparse representation of the cell images.
Classification is performed by choosing the label of the class whose dictionary atoms
minimize the reconstruction error.

Yang et al.[97]: The size of the training set is first increased by Spontaneous
Activity Pattern (SAP). Using this augmented dataset image descriptors are learnt
using Independent Component Analysis (ICA). The classification is performed by
Kernel SVM, with a correlation kernel based on the Pearson correlation.

Finally our approach presented in [85], has two main contributions to the prob-
lem. First, an optimal set of features, based on the fusion of morphological and
texture descriptors, is experimentally found. Second, the combination of a features
selection process and of a discriminant analysis allows to effectively reduce the high
dimensionality of the data and at the same time to cope with the high intra-class
variance of the samples. These include Minimum-Redundancy Maximum-Relevance
methodology (mrmr) algorithm as the feature selection algorithm and Subclass dis-
criminant Analysis, to overcome the limitations of the traditional LDA approach, to
encode the variability of the data. The classification is based on traditional (k-NN).
Table 3.1 shows the average accuracy on HEp2 cell classification for the different
methods, including our proposed approach, published on the Special Issue. A more
detail comparision can be found in [87].

Table 3.1: Accuracy comparisons(%) for the different methods on the MIVIA [53]
dataset

Method Experimental Protocol 1 Experimental Protocol 2
Cell Level (%) Image Level (%) Cell Level (%) Image Level (%)

Faraki 70 79 72 75
Kastaniotis 75 86 65 75
Kazanov 71 100 55 71
Nosaka 69 71 71 86
Shen 74 86 69 75
Snell 57 71 54 71
Stoklasa 64 79 64 71
Wang 67 79 59 64
Wiliem 67 71 57 64
Xiangfei 67 89 63 71
Yang 65 79 61 75
Our method 72 93 90 96
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3.2 Image Database

The samples used in our experiments were obtained from the MIVIA HEp-2, an
annotated database of Indirect Immunofluorescence (IIF) images that is publicly
available at [53]. The database was firstly adopted and described in [41] and later
used in the 2012 HEp-2 Cells Classification Contest [37]. It contains 28 images of
different patients (one image per patient), which were obtained with the following
protocol. Each image was acquired with a fluorescence microscope coupled with a
50W mercury vapour lamp and a digital camera having a CCD with square pixels
of size 6.45 µm. The microscope observed, with a 40-fold magnification, a slide of
HEp-2 substrate prepared with a fixed dilution of 1:80, as recommended in [56]. The
size of the IIF images is 1388x1038 pixels and their color bit depth is 24.

Specialists manually segmented and annotated each cell in the IIF images. All
the segmentations were reviewed by medical doctors specialized in immunology,
which also provided information related to fluorescence intensity, mitotic phase and
staining pattern of the cells. Thus, the database provides for each image its fluo-
rescence intensity (intermediate or positive) and, for each object in an image, (i)
its seed point and bounding box, (ii) a binary mask describing its region of interest
(ROI), (iii) the object type (cell, mitotic cell or artifact due to the slide’s preparation
process) and, if the object is a non-mitotic cell, (iv) the label of its staining pattern,
i.e. the six classes reported in Figure 3.3. They are distinguished as follow:

Homogeneous: diffuse staining of the entire nucleus, with or without apparent
masking of the nucleoli.

Nucleolar: fluorescent staining of the nucleoli within the nucleus, sharply sep-
arated from the unstained nucleoplasm.

Coarse/Fine Speckled: fluorescent aggregates throughout the nucleus which
can be very fine to very coarse depending on the type of antibody present.

Centromere: discrete uniform speckles throughout the nucleus, the number
corresponds to a multiple of the normal chromosome number.

Cytoplasmic fluorescence: granular or fibrous fluorescence in the cytoplasm.

The dataset used for training and testing our method contains all and only the
normal cells (i.e., neither artifacts nor mitotic cells) of the 28 IIF images included
in the MIVIA HEp-2 database. A full characterization of this dataset is reported
in Table 3.2.
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Figure 3.3: six types of staining patterns with positive and intermediate intensity
levels.

Table 3.2: HEp-2 cell dataset characterization, grouped by image ID.

Image ID Pattern Intensity n. of cells
1 Homogeneous positive 61
2 Fine Speckled intermediate 48
3 Centromere positive 89
4 Nucleolar intermediate 66
5 Homogeneous intermediate 47
6 Coarse Speckled positive 68
7 Centromere intermediate 56
8 Nucleolar positive 56
9 Fine Speckled positive 46
10 Coarse Speckled intermediate 33
11 Coarse Speckled intermediate 41
12 Coarse Speckled positive 49
13 Centromere positive 46
14 Centromere intermediate 63
15 Fine Speckled intermediate 63
16 Centromere positive 38
17 Coarse Speckled positive 19
18 Homogeneous positive 42
19 Centromere intermediate 65
20 Nucleolar intermediate 46
21 Homogeneous intermediate 61
22 Homogeneous positive 119
23 Fine Speckled positive 51
24 Nucleolar positive 73
25 Cytoplasmatic intermediate 24
26 Cytoplasmatic positive 34
27 Cytoplasmatic intermediate 38
28 Cytoplasmatic intermediate 13

Tot. 1455
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3.3 Proposed Method

In the recent literature several formulations of image descriptors have been applied
to the automated classification of HEp-2 staining patterns. These descriptors are
derived from either morphological or textural analysis. However, the relevance of
these different types of attributes and their mutual contribution are still open issues.

In several works it has been found that the integration of information of different
nature provides a substantial improvement of the classification accuracy [51, 52].
Furthermore, the combination of local and global descriptors has been claimed to
generate a more robust mechanism of texture representation [57, 58].

Based on these considerations, in our work we performed a detailed analysis of
different formulations of morphological, global and local texture characteristics and
we investigated, through their integration at different levels, their reciprocal impact
on the classification problem.

The outline of the proposed staining pattern classification algorithm is the fol-
lowing. For each cell: (i) we normalise its image and (ii) we extract different feature
vectors, one for each considered attribute type. When combining different attributes
to characterize a cell image, the corresponding feature vectors are concatenated.
Then, for each individual attribute or concatenation of attributes, we select its most
relevant feature variables and apply SDA to remap the cell representation into a
novel feature space that provides a better class separation. Finally, we train a clas-
sifier on a sample set and apply it to a separate test set of samples.

3.3.1 Image Normalisation

Size and intensity normalisation of the samples is a necessary preprocessing step.
In fact, small differences in the dimensions of the cell images are normal, and these
differences are completely uncorrelated with their staining pattern. On the other
hand, there are considerable variations of fluorescence intensity between intermedi-
ate and positive samples, and, in a smaller scale, even within cells of the same image
(see Figure 3.1). Reducing such variability helps to decrease the noise in the classi-
fication process and avoids as well the necessity of training two separate classifiers
for intermediate and positive samples.

In our work, all the cell images were resized to 128x128 pixels. As for the
intensity, since the images are produced by green fluorescence, the samples were
first converted to grayscale by taking into account only the green channel. Then,
intensity normalisation was obtained by linearly remapping all the intensities so that
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the bottom 1% and the top 1% of all pixel values are saturated at, respectively, the
lowest and highest intensities.

3.3.2 Feature Extraction

In the following, we will use interchangeably the terms “feature set” and “attribute”
to refer to the elements used to characterize a cell image according to a specific
technique.

As already explained, we took into consideration different image attributes be-
longing to three main categories:

1. morphological features, focusing on shape attributes of the fluorescent signal
of the cells or of specific regions within the cells;

2. global texture descriptors, which summarize the overall appearance or general
distribution of the gray-levels in the cell image;

3. local texture descriptors, which summarize the isolated contribution of small
regions or pixel neighbourhoods.

Table 3.3: Image attributes considered in this work.

Image Attributes size
Morphological Features MORPH 43

Global Texture Features
Gray-Level Co-occurrence Matrices [59, 60, 61] GLCM 44
Edge Orientation Histograms [62] EOH 80
Rotation-Invariant Gabor features [63] RIGF 32
Modified Zernike moments [64] ZERN 55

Local Texture Features
Rotation-Invariant Uniform Local Binary Patterns [65] LBP riu2 42
Completed Local Binary Patterns [66] CLBP 42
Co-occurrence of adjacent LBPs [67] CoALBP 3072
Rotation-invariant Co-occurrence of adjacent LBPs [68] RIC-LBP 408

For each of these categories, several approaches have been described in the lit-
erature. However, performing an exhaustive analysis of all of them is extremely
difficult and out of the scope of this work. Here we focused on the ones that, based
on preliminary experiments that we do not report for the sake of brevity, appear to
be the most promising for HEp-2 cell characterization. The list of these attributes
can be seen in Table 3.3.
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Morphological Features (MORPH)

Several morphological features have been used to characterize the cell images.

The first feature derives from the following consideration. As it is shown in
Figure 3.2, for all the staining patterns except the cytoplasmatic, the fluorescence
signal is localized into the nucleus of the cell. Therefore, in these cases, the cell ROI is
round or elliptical. On the contrary, the shape of cytoplasmatic patterns is generally
more irregular. These differences can be summarized by the ROI circularity, defined
as Area/Perimeter2.

Figure 3.4: Examples of binary masks obtained from seven progressive thresholding
levels (TH1-TH7) applied to images of cells with homogeneous (top) and nucleolar
(bottom) staining patterns.

Other morphological measurements are extracted from the binarization of the
cell image at increasing intensity thresholds. For each of these thresholds a dif-
ferent binary mask is obtained, which isolates the structuring elements of the cell
pattern at that specific intensity level. As it can be seen in Figure 3.4, the shape
changes of these masks show a very characteristic behaviour for distinct staining pat-
terns. Therefore, the concatenation of morphological parameters measured at the
increasing thresholding levels appears to be effective in characterizing the HEp-2
cell patterns [51].

As for the binarization, we used seven progressive thresholds. A first reference
value (TH4, in Figure 3.5) is obtained applying the Otsu’s method [69] to the inten-
sity histogram of the cell. The two intervals of the intensity histogram defined by
TH4 are further divided intro three equal segments to obtain the other six thresh-
olds, namely TH1-3 and TH5-7 for, respectively, the lower and upper parts of the
intensity distribution (see Figure 3.5).

For each binary mask, we then extracted the following morphological properties:

1. proportion of the ROI area covered by foreground pixels;
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Figure 3.5: The seven progressive thresholds computed from a cell intensity his-
togram.

2. number of connected regions of the foreground;

3. proportion of the connected regions of the foreground which have circular
shape (i.e. with circularity >= 0.8);

4. average area of the foreground’s connected regions divided by the total area
of the cell ROI;

5. average circularity of the connected regions of the foreground;

6. average solidity of the foreground, where the solidity of each connected region
is computed as the percentage of the pixels in the convex hull that also belong
to that region.

All the measurements (i.e. the circularity of the ROI, and the six properties ex-
tracted at the seven thresholding levels) are finally concatenated, obtaining a de-
scriptor of size 43.

Some of the aforementioned properties can be more discriminative for some
classes and less for others. For example, features 1 and 4 provide the same val-
ues when the foreground contains only one connected region (e.g. the homogeneous
pattern in the first row of Figure 3.4) and very different ones in other cases (e.g.
the nucleolar pattern in the second row of Figure 3.4). However, as we will show in
the following, the application of a Feature Selection process helps to discard the less
relevant variables.
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Global Textural Features (GTF)

Gray-Level Co-occurrence Matrices (GLCM) Several types of global texture
descriptors can be computed from Gray-Level Co-occurrence Matrices. These ma-
trices report the distribution of co-occurring values between neighbouring pixels
according to different distances and directions [59]. More specifically, each GLCM
element (i, j)d,θ contains the probability for a pair of pixels located at a distance d
and direction θ to have gray levels i and j, respectively. In our work, we first com-
puted four GLCMs for a fixed unitarian d and a varying θ = 0o,45o,90o,135o after
grouping intensity values into 16 levels. The use of 4 different directions makes the
method less sensitive to image rotations. Then, we extracted from each GLCM a to-
tal of 22 statistical measures, whose full characterization can be found in [59, 60, 61].
Finally, we computed the meanM and the range value R (i.e. maximum-minimum)
over the 4 GLCMs for each of these measures, obtaining a total of 44 GLCM features.

Modified Zernike moments (ZERN) Zernike radial polynomials can serve as
basis functions to extract image moments, capable of describing the shape and
textural characteristics of an object. However, they are strongly affected by changes
in scale and position of the objects in the image. An effective descriptor overcoming
this limitations and invariant to rotation, translation and scaling, has been presented
in [64]. Its invariance properties are obtained computing modified Zernike moments
on the normalised power spectrum of the image. In our case, for each cell we
extracted a descriptor of 55 elements.

Edge Orientation Histograms (EOH) The general idea of Edge Orientation
Histograms (EOH, [62]), as the name suggests, is to represent an image by a his-
togram obtained from the predominant gradient orientations of its edge pixels. More
specifically, EOH applies a Canny operator to obtain contour pixels from the image,
and then it constructs a histogram of directions, counting for each bin the number
of contour pixels whose gradient falls within its specific orientation interval. In our
work, we computed a 80-dimensional EOH feature vector for each cell image.

Rotation-Invariant Gabor features (RIGF) Gabor filters are widely used for
edge detection and texture analysis. Although not rotation invariant, Gabor features
can be modified to gain this property by computing their Discrete Fourier Transform
(DFT). In this way, the circular shift caused in the Gabor feature vector by an image
rotation is converted into a phase shift in the Fourier domain. This phase shift does
not affect the magnitude of the DFT coefficients which, therefore, can be used as
a rotation-independent representation of textural data. In our work we used the
formulation of RIGF proposed in [63], obtaining for each cell a feature vector of
dimension 32.
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Local Textural Features (LTF)

In the context of local textural features, one of the most used descriptors is based
on local binary patterns (LBPs) [70]. This approach has been found to be very
promising also for the characterization of HEp-2 fluorescence patterns [51, 68].

The basic idea behind this descriptor is to represent the texture of the image as a
histogram of LBPs, i.e. binary patterns representing the intensity relations between
a pixel and its neighbours. For each image pixel, an LBP is obtained by binarizing
its neighbouring region using the intensity of the pixel as threshold, and then by
converting the resulting binary pattern to a decimal number. Finally, a histogram
is generated by taking into account the occurrences of all the LBPs in the image.
This is a very simple yet powerful textural descriptor, whose main advantage is the
invariance to changes of illumination over the image.

Recent literature reports different descriptors that are supposed to extend and
improve the descriptive capabilities of classical LBPs. In our work, we considered
the following major formulations.

Rotation-Invariant Uniform Local Binary Patterns (LBPriu2) A binary
pattern is called uniform if it contains not more than two bitwise transitions from 0
to 1 or vice versa when the bit pattern is transversed circularly. Uniform patterns
were found to be predominant with respect to other patterns for texture description.
Therefore, in [65] they are used to produce compact rotation-invariant LBP feature
vectors. In our work we concatenated three histograms with different scales of LBP
neighbourhood, as suggested in [65], obtaining a feature vector of dimension 42.

Completed Local Binary Patterns (CLBP) The classical formulation of LBP
uses the intensity of the center pixel as threshold for its neighbours. Hence, only the
sign of the difference between the center and the neighbour gray values is relevant.
The key idea of Completed Local Binary Patterns (CLBP [66]) is to represent each
neighbourhood by its center pixel and a local difference sign-magnitude transform
(LDSMT) that computes both the sign and the magnitude of the difference between
the central pixel and its neighbours. Using the same scale and neighbourhood of
LBP riu2, we obtained a 42-dimensional CLBP feature vector.

Co-occurrence of Adjacent LBPs (CoALBP) The original expression of LBPs
lacks structural information among different binary patterns. In order to provide
them, [67] introduced a novel formulation which measures the co-occurrence among
multiple LBPs (and in particular, among adjacent LBPs). This formulation provides
a high-dimensional feature vector that has been found to provide a better texture
characterization compared to previous LBPs. Concatenating three CoALBP his-
tograms with the parameters suggested in [68], the resulting feature vector has
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size 3072.

Rotation-Invariant Co-occurrence of Adjacent LBPs (RIC-LBP) The CoALBP
features can vary significantly depending on the orientation of the target object. In
order to cope with this problem, [68] extends the concept of rotation equivalence
class of LBP riu2 to the CoALBPs. This is achieved by attaching a rotation invariant
label to each LBP pair, so that all CoALBPs corresponding to different rotations of
the same LBPs have the same value. For each cell image, we extracted and concate-
nated three RIC-LBP histograms as suggested by [68], obtaining a feature vector of
dimension 408.

3.3.3 Classification based on Subclass Discriminant Analy-
sis

The categorization of the cell staining patterns is a multiclass classification problem.
Our classifier is based on Subclass Discriminant Analysis (SDA), an algorithm that
has been recently proposed in [54].

SDA belongs to the family of Discriminant analysis (DA) algorithms, which
have been used for dimensionality reduction and feature extraction in many appli-
cations. Given a set of samples X = (x1, x2, . . . , xn), where each xi is a vector
in <D and has an associated class label ∈ [1, C], DA algorithms compute a map-
ping of X to a subspace in <d, with d�D, where the data can be more easily
separated according to their class-labels. This mapping is defined by a projection
matrix V = (v1, v2, . . . , vd), with vi ∈ <D, which, in most DA algorithms, is found
by maximizing the so-called Fisher-Rao’s criterion:

J(V ) =

∣∣∣V TAV
∣∣∣

|V TBV |
(3.1)

where A and B are symmetric and positive-defined matrices, so that they define a
metric. The solution to this problem is given by the generalized eigenvalue decom-
position:

AV = BV Λ (3.2)

where Λ is the diagonal matrix of eigenvalues corresponding to the column-vectors
of V.

Linear Discriminant Analysis (LDA) is probably the most well-known DA al-
gorithm. It assumes that the C classes the data belong to are homoscedastic, i.e.
that their underlying distributions are Gaussian with common variance and different
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means. In equation (3.1), LDA uses A = SB, the between-class scatter matrix, and
B = SW , the within-class scatter matrix, which are defined as follows:

SB =
C∑
i=1

(µi − µ)(µi − µ)T (3.3)

SW = 1
n

C∑
i=1

ni∑
j=1

(xij − µi)(xij − µi)T (3.4)

where n is the number of the samples in X, ni the number of samples in class i, µi
is the sample mean for class i, µ is the global mean and xij is the jth sample of class
i.

The mapping provided by LDA maximizes the between-class variance and mini-
mizes the within-class variance in any particular data set. In other words, it guaran-
tees maximal class separability of the training samples and, possibly, optimizes the
accuracy in later classification. The main drawback of LDA is that the dimension
of the reduced space is bounded by the rank of SB, which is in turn equal or lower
than C − 1. This means that each sample in the original space is represented by at
most C−1 features. As a consequence, LDA works well for problems that are linear
in the origin space, i.e. those for which C − 1 features are sufficient to discriminate
C classes, but fails to provide optimal subspaces for inherently non-linear structures
in data.

To cope with this problem, several extensions of LDA have been introduced in
literature [71] and SDA is one of the most effective. The main idea of SDA is to
approximate the underlying distribution of each class using a mixture of Gaussians.
This is achieved by dividing the classes into a set of subclasses, capable of describing
for each class the variance of the data in a more subtle way. Therefore, the main
problem to be solved in SDA is to find the optimal number of subclasses for each
class.

Once the number of subclasses is known, the transformation matrix V is found
by assigning to A in equation (3.1) the between-subclass scatter matrix defined as:

SB =
C−1∑
i=1

Hi∑
j=1

C∑
k=i+1

Hk∑
l=1

pijpkl(µij − µkl)(µij − µkl)T (3.5)

where Hi is the number of subclasses of class i, µij and pij are the mean and prior
probability of the jth subclass of class i, respectively. The priors are estimated
as pij = nij/n, where nij is the number of samples in the jth subclass of class
i. With this formulation of SB, equation (3.1) works towards the contemporary
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maximization of the distance between the class means and of the one between the
means of subclasses of the same class. The objective is, again, to maximize the
classification accuracy in the reduced space.

In order to select the optimal number of subclasses, two different methods are
proposed in [54] . The first is based on a stability criterion described in [72].
However, as pointed out in [73], the minimization of the metric used in this criterion
is not guaranteed when data have a Gaussian homoscedastic subclass structure (and
probably even for heteroscedastic). The second selection criterion is based on a
leave-one-object test. In practice, a leave-one-out cross validation is applied for each
subdivision, and the optimal subdivision is the one maximizing the recognition rate.
The problem with this strategy is its very high computational costs, especially with
large datasets and high number of classes as in our case. Therefore, in our work we
use a slightly different formulation of this criterion, which is based on a stratified
5-fold cross validation of the training set and on the accuracies obtained with a
k-Nearest Neighbour (k-NN) classifier.

Our implementation differs from the original SDA formulation for two other
details. The first concerns the clustering method. In [54] data are assigned to sub-
classes by first sorting the class samples with a Nearest-Neighbour based algorithm
and then by dividing the obtained list into a set of equal-sized clusters. However,
this method does not allow to model effectively the non-linearity present in the
data, as in the case under analysis of HEp-2 staining patterns. Therefore, we used
the K -means algorithm, which partitions the samples into K clusters by minimizing
iteratively the sum, over all clusters, of the within-cluster sums of sample-to-cluster-
centroid distances.

The second difference is that, instead of increasing at each iteration the number
of subclasses of all groups of the same amount, we first choose a maximal number
of subclasses for each class, based heuristically on the number of samples per class.
Then, all the possible permutations of class subdivisions are tested, halting the
subdivision process of a specific class r if the minimal number of samples in any
of its current Hr clusters drops below a predefined threshold. In order to reduce
the computational burden, the clusters created for each class and each number of
subclasses are computed only once and cached for further use.

Once the optimal number of subclasses have been found and the feature vectors
of the samples have been obtained by projecting them on the sub-space defined
by SDA, the classification is performed with k-NN. A value of 8 for k has been
heuristically found to provide good classification results.
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3.3.4 Feature Selection

Feature selection (FS) is a data preprocessing step that is frequently applied in
machine learning. FS extracts the subset of features used to describe the data that
improves the classification accuracy. The main purposes of FS are two. First, it
reduces the dimensionality of the input data, removing irrelevant information and
improving their comprehension by telling which are the most important features and
how they are correlated. Second, it improves the chances of avoiding overfitting,
whose probability increases with the dimension of the feature space.

In our work, a reduction of the dimensionality of the feature space is already pro-
vided by SDA. However, decreasing the initial number of parameters representing
the data in order to include only the features that are the most relevant for the con-
sidered task improves the separability of the samples in the reduced space computed
by SDA and, hence, the classification accuracy (as we will show in Section 3.5).

We applied a robust feature selection method based on the minimum-Redundancy-
Maximum-Relevance (mRMR) algorithm, whose better performance over the con-
ventional top-ranking methods has been widely demonstrated in literature [74].
mRMR sorts the features that are most relevant for the characterization of the clas-
sification variable, pointing at the contemporaneous minimization of their mutual
similarity and maximization of their correlation with the classification label.

However, mRMR provides a mere ranking of the features with no information
on the size of the optimal feature set. Therefore, heuristically, we looked for this
optimal size by iteratively increasing the number of candidates in the feature set
until the global optimum is found. The candidates are selected in order of relevance
and, given the computational burden of the classification algorithm, at each itera-
tion their number is increased by a factor 10. The initial number of candidates is
chosen according to the following consideration. The rank of matrix SB and, there-
fore, the dimensionality d of the reduced subspace obtained with SDA, is given by
min(H − 1, rank(SX)), where H is the total number of subclasses, SX is the ma-
trix concatenating the representative vectors of the samples in the training set and
rank(SX) is equal (or minor) to the number of features characterizing each sample.
Since the data in our problem present high non-linearities, we set as reasonable lower
bound for d the value 40.

3.4 Experimental Protocol

All experiments shown in this work were run on the HEp-2 cell dataset described in
Section 3.2 using the following protocol.
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The first experiment applies the leave-one-out technique over all the 28 IIF im-
ages composing the dataset. For each image, an instance of the classifier is trained
with the cells of the remaining 27 images and then used to classify the cells of the
image left out. The classification evaluates each cell individually, without using
information on the other cells belonging to the same image. The classification ac-
curacy is evaluated (i) on a cell-level basis, in terms of percentage of cells correctly
classified for each class over all the 28 leave-one-out runs, and (ii) on an image-level
basis, in terms of percentage of images correctly classified, using as the predicted
image label the class most frequently assigned to its cells. In both cases, the ac-
curacy is obtained by adding the classification counts of the 28 leave-one-out runs
(i.e. the number of cells of class i assigned to class j are evaluated by summing the
corresponding numbers in each run, and then percentages are computed), and not
by averaging the percentages relative to each run.

The leave-one-out method over the images ensures a complete separability and
independence of training and test set and it is the experimental protocol that maxi-
mizes the number of independent samples (i.e. cells belonging to different patients)
used for training. Therefore, it is particularly suited to the HEp-2 cell dataset, that
is characterized by a very low number of independent samples per class. Moreover,
the execution of several training/test runs with different images allows to assess the
robustness and generalization capabilities of the classifier.

A second additional experiment is performed by dividing the images into two
separate training and test sets in exactly the same way as it was done in the 2012
HEp-2 Cells Classification Contest [37]. The classifier is trained with the cells in-
cluded in the training set, which contains only 14 of the images of the entire dataset,
and the performance of the classifier is assessed on the test set (i.e. the cells be-
longing to the remaining 14 images). As for the previous experiment, cell-level and
image-level accuracies are computed.

3.5 Results and Discussion

Our experiments were aimed at answering the following research questions:

• how do the different attributes described in Section 3.3.2 contribute to the
classification of the HEp-2 staining patterns and how can these individual
attributes be combined to improve the classification accuracy? (Section 3.5.1)

• how does SDA strategy cope with the high within-class variance that is typical
of HEp-2 staining patterns? (Section 3.5.2)
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3.5.1 Assessing the classification accuracy

For clarity, we briefly recall the main idea behind our feature extraction approach.
Morphological, global and local textural descriptors have been found to be the most
suitable features for characterizing HEp-2 fluorescence patterns. However, the rel-
evance of each of this kind of attributes and their mutual contribution is still an
open issue. In this work we postulate that the integration of information of differ-
ent nature improves the capabilities of a classifier of recognizing different staining
patterns. To this end, we defined a set of morphological features and we identified
different textural descriptors that appeared promising for the task considered.

In the first tests, we computed the classification accuracy (on a cell-level ba-
sis) obtained with each individual feature set described in Section 3.3.2, using the
leave-one-out experiment described in Section 3.4. Then we analysed the accuracies
obtained with different groups of attributes.

The experimental results are summarized in Figure 3.6, where we report for
different feature sets the classification accuracy and (within parentheses) the number
of optimal features selected by the FS algorithm.

Figure 3.6: Cell-level accuracy obtained by different sets of features (leave-one-out
experiment). The sections of the graph describe the results of: a) morphological
features, b) global textural features, c) local textural features, d) best combinations
of the three attribute categories, e) sub-groups of attributes of the best solution, f)
our previous approach [55].
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Figure 3.6 is divided into sections showing the accuracies of the individual at-
tributes (a-c) and of different combinations of them (d-e). For the sake of brevity, we
report only those combinations, between all the ones tested, providing the highest
accuracies. For comparison, we also report, in section (f), the accuracy obtained by
our previous approach to the problem [55] (feature set named BIOINFO). It should
be noted that FS was not applied to attributes whose size was close to, or lower
than, 40, which is the limit value for our FS process (Section 3.3.4).

The following initial remarks can be drawn from the results of Figure 3.6:

• the single attribute providing the highest accuracy was RIC-LBP (80.76%),
followed by CoALBP (77.80%) and MORPH (71.48%);

• considering the categories of individual attributes, local textural features (LTF)
performed much better than morphological features, which were in turn better
than global textural features (GTF);

• in general, groups of feature sets consistently achieved better results than their
single components;

• the integration of morphological and both local and global textural features
provided the most comprehensive solution to characterize fluorescence pat-
terns. That is, the more heterogeneous the information, the better the accu-
racies. The best result (89.55%) was obtained by the combination of GLCM,
CoALBP and MORPH. The accuracy obtained by this optimal group was
higher than any partial combination of its composing attributes (shown in
figure 3.6(e));

• the proposed method outperformed our previous approach to the problem,
which obtained a 76.56% accuracy.

These results require a more detailed discussion. First, while LTF are effective in
characterizing the cells, as also found in [37], GTF do not perform equally well. In
other words, GTF are less capable of capturing the differences between the various
staining patterns, differences that, on the contrary, are more suitably described in
terms of local variations of the intensity patterns. The relevance of local information
is supported by the results obtained by morphological features, which, in a way, en-
code local characteristics into the description of the morphological properties of the
cells and of the changes of these properties as a function of the intensity thresholds
used to compute them.

Second, the combination of global and local texture descriptors consistently gen-
erates a more robust mechanism of texture representation (for example, this is shown
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in Figure 3.6 by comparing the accuracy of GLCM-CoALBP, 88.25%, with the ac-
curacy of the single attributes, 61.31% and 77.80% respectively). This result is
consistent with the findings of previous works [57, 58].

Third, the combination of different attributes generates a completely new mech-
anism of image representation compared to the one provided by the same attributes
considered individually. Thus, the feature sets best performing individually are not
necessarily the ones that will give the best performance when combined together.
Indeed, the best GTF and LTF attributes (respectively, EOH with 67.35% and
RIC-LBP with 80.76%) are not included into the group that obtained the highest
accuracy and, for instance, much better accuracies are obtained with groups based
on GLCM as GTF and on CoALBP as LTF. This could be explained as follows:

• the integration with other features helps to soften the major limitations of
specific attributes (e.g., the dependence from texture rotations of CoALBP);

• Feature Selection contributes to this scenario by selecting a compact set of
features that helps to reduce the noise and by strengthening the mutual con-
tribution of specific attributes.

Feature Selection deserves another detailed discussion. As expected, FS always
significantly improves the accuracy. As an example, in Figure 3.7 we show, for the
group GLCM-RIC-LBP-MORPH, the behaviour of the accuracy against the number
of features used by the classifier. As it can be seen, the accuracy reaches a global
maximum for 100 features improving of more than 5% the accuracy obtained with
all the 495 feature variables. Another interesting result is that the total accuracy
around the optimal set size is rather stable (i.e. less than 2% in the range between
60 and 160), indicating that the performance of the proposed approach is not strictly
tied to a precise identification of the optimal size. For other attributes and attribute
groups, including the optimal GLCM-CoALBP-MORPH group, we obtained similar
results that we omit for brevity. We simply underline the fact that with very large
feature sets (e.g. those including CoALBP), the performance drop between the
optimal set and the full feature set is significantly higher than the one shown in
the example of Figure 3.7. As a matter of facts, in these cases, since the classifiers
are based on a number of features largely greater than the number of observations,
results with no FS are likely to be affected by overfitting. We believe that these
results highlight as well the capabilities of FS to prevent this problem.

The analysis of the features surviving the FS pruning can provide some insights
into the cell characteristics that are more relevant for the classification of the staining
patterns. In general, in all groups all types of features are present, with a slight
preference for local texture descriptors. If we consider, as an example, the optimal
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Figure 3.7: Cell classification accuracy vs. size of the feature set (features set
GLCM-RIC-LBP-MORPH, leave-one-out experiment).

combination GLCM-CoALBP-MORPH, we have that, of the 150 features selected,
16 come from GLCM (out of a total of 44), 106 from CoALBP (3072) and the
remaining 28 from MORPH (43). This is another evidence of the fact that features
with different nature are effectively combined to provide a substantial improvement
of the accuracy.

Concluding this section, we present the detailed results of the optimal solution
found for this first experiment (GLCM-CoALBP-MORPH). In Table 3.4 we show
for each of the 28 IIF images its true class and the number and the percentage of
the image cells labelled with each of the six staining patterns. Table 3.5 shows on
the left the confusion matrix and the total accuracy of cell classification (89.55%)
and, on the right, the image-level confusion matrix and the total accuracy of image
classification (96.43%).

3.5.2 Discriminative capabilities of SDA

Another interesting subject of analysis is the discriminative capability of our SDA-
based classification approach. For the discussion of this issue, we will also make use
of the results obtained with the second experiment described in Section 3.4, which is
based on two separate training and test sets. For the sake of conciseness, we do not
report the detailed results of this experiment, which basically confirmed the main
findings of the leave-one-out experiment:

• grouped attributes perform better than single attributes;

• the combination of morphological, global and local textural information guar-
antees the highest accuracies;

35



3 – Classification of HEp2 Staining Patterns in Indirect Immunofluorescence Images

Table 3.4: Leave-one-out experiment: number and percentage of cells assigned to
each class. The values corresponding to the true class are highlighted in dark gray.

IMAGE Cent. Hom. Nucl. C. Sp. F. Sp. Cyt.
ID True class n. % n. % n. % n. % n. % n. %
1 Hom. 0 0 61 100 0 0 0 0 0 0 0 0
2 F. Sp. 1 2.08 4 8.33 0 0 1 2.08 42 87.5 0 0
3 Cent. 89 100 0 0 0 0 0 0 0 0 0 0
4 Nucl. 1 1.51 0 0 57 86.36 8 12.12 0 0 0 0
5 Hom. 0 0 46 97.87 0 0 0 0 1 2.13 0 0
6 C. Sp. 2 2.94 1 1.47 0 0 65 95.59 0 0 0 0
7 Cent. 49 87.5 0 0 5 8.93 2 3.57 0 0 0 0
8 Nucl. 1 1.79 0 0 55 98.21 0 0 0 0 0 0
9 F. Sp. 0 0 5 10.87 0 0 1 2.17 40 86.96 0 0
10 C. Sp. 3 9.09 0 0 0 0 29 87.88 1 3.03 0 0
11 C. Sp. 0 0 0 0 2 4.88 39 95.12 0 0 0 0
12 C. Sp. 0 0 0 0 0 0 49 100 0 0 0 0
13 Cent. 46 100 0 0 0 0 0 0 0 0 0 0
14 Cent. 14 22.22 20 31.75 0 0 9 14.29 20 31.75 0 0
15 F. Sp. 2 3.17 15 23.81 0 0 7 11.11 39 61.90 0 0
16 Cent. 37 97.37 0 0 1 2.63 0 0 0 0 0 0
17 C. Sp. 0 0 0 0 1 5.26 14 73.68 4 21.05 0 0
18 Hom. 0 0 41 97.62 0 0 1 2.38 0 0 0 0
19 Cent. 63 96.92 0 0 2 3.08 0 0 0 0 0 0
20 Nucl. 0 0 0 0 45 97.83 0 0 0 0 1 2.17
21 Hom. 3 4.92 44 72.13 0 0 2 3.28 12 19.67 0 0
22 Hom. 0 0 115 96.64 2 1.68 0 0 1 0.84 1 0.84
23 F. Sp. 0 0 2 3.92 0 0 0 0 49 96.08 0 0
24 Nucl. 1 1.37 3 4.11 69 94.52 0 0 0 0 0 0
25 Cyt. 0 0 0 0 0 0 2 8.33 0 0 22 91.67
26 Cyt. 0 0 0 0 0 0 0 0 0 0 34 100
27 Cyt. 0 0 0 0 0 0 1 2.63 0 0 37 97.37
28 Cyt. 0 0 0 0 0 0 0 0 0 0 13 100

Table 3.5: Leave-one-out experiment: confusion matrices (%).
CELL CLASSIFICATION IMAGE CLASSIFICATION

class Cent. Hom. Nucl. C. Sp. F. Sp. Cyt. Cent. Hom. Nucl. C. Sp. F. Sp. Cyt.
Cent. 83.47 5.60 2.24 3.08 5.60 0 83.33 16.67 0 0 0 0
Hom. 0.91 93.03 0.61 0.91 4.24 0.30 0 100 0 0 0 0
Nucl. 1.25 1.24 93.78 3.32 0 0.41 0 0 100 0 0 0
C. Sp. 2.38 0.48 1.43 93.33 2.38 0 0 0 0 100 0 0
F. Sp. 1.44 12.5 0 4.33 81.73 0 0 0 0 0 100 0
Cyt. 0 0 0 2.75 0 97.25 0 0 0 0 0 100

Total accuracy = 89.55% Total accuracy = 96.43%

• the optimal solution is provided, again, by the GLCM-CoALBP-MORPH
group (with 100 features), although in this experiment other groups perform
in a comparable way at both cell and image-level.

• the performance around the optimal set size is, again, rather stable, indicating
that the accuracy is not strictly tied to a precise identification of the optimal
number of features.

For completeness, we detail the best result achieved in Table 3.6, where as before
we show the confusion matrix and classification accuracy at cell-level (on the left)
and at image-level (on the right). As it can be seen, the cell-level accuracy drops
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drastically from the 89.55% of the first experiment to the current 72.21%, while
the accuracy at image level is similar (92.86% vs. 96.43% of the leave-one-out
experiment, both corresponding to a single misclassified image).

This difference can be easily explained in terms of the characteristics of the
training and test sets. In the second experiment, the availability of only 14 differ-
ent images for training, coupled with the high within-class variance present in the
HEp-2 cell patterns, translates into very few independent samples per class. As a
consequence, the manifolds of the various staining patterns in the feature space are
likely to be under-sampled, thus hampering the SDA capabilities to model them in a
suitable manner and, consequently, reducing the cell-level classification accuracy of
the whole method. The better performance at image-level can be simply explained
analysing in details the results of the leave-one-out experiment (Table 3.4), where
the per class correct accuracies are most of the times greater than 85%. Therefore,
even if more cells are misclassified in the second experiment, the ones maintaining
the correct label are still sufficient, in most of the cases, to assign the correct image
label.

Table 3.6: Separate training/test sets experiment: confusion matrices (%).
CELL CLASSIFICATION IMAGE CLASSIFICATION

class Cent. Hom. Nucl. C. Sp. F. Sp. Cyt. Cent. Hom. Nucl. C. Sp. F. Sp. Cyt.
Cent. 90.60 0 5.37 4.03 0 0 100 0 0 0 0 0
Hom. 7.78 74.44 1.11 0.56 16.11 0 0 100 0 0 0 0
Nucl. 11.51 2.88 65.47 20.14 0 0 0 0 100 0 0 0
C. Sp. 32.67 1.98 0 53.47 10.89 0.99 0 0 0 66.67 33.33 0
F. Sp. 13.16 21.93 2.63 0.88 61.40 0 0 0 0 0 100 0
Cyt. 5.88 0 0 3.92 0 90.20 0 0 0 0 0 100

Total accuracy = 72.21% Total accuracy = 92.86%

The protocol of the second experiment let us also inspect in more details the
strategy used by SDA in dividing class samples into subclasses. In fact, differently
from the leave-one-out method, where the optimal class subdivision is likely to
vary at each fold, the use of a single training set translates into a single optimal
partition of subclasses. If we consider as an example the best solution shown in
Table 3.6, the number of subclasses is two for nucleolar and centromere classes, three
for cytoplasmatic class, four for coarse and fine speckled and five for homogeneous
class.

For nucleolar and centromere classes, SDA performs a straightforward subdivi-
sion between cells with intermediate and positive fluorescence intensity. For other
classes (e.g. the homogeneous pattern) the subdivision splits the cells in a more
subtle way, grouping cells of similar appearance in the same subclass (Figure 3.8),
which is obviously of major help for the classification process.

Finally, in order to further assess the discriminative capabilities of our SDA-
based approach, we compared our method with Support Vector Machines (SVM), a
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Figure 3.8: Sample images from the five homogeneous subclasses obtained in the
optimal solution shown in Table 3.6.

state-of-the-art classifier that is widely recognized for its classification performance
by computer scientists and machine learning researchers. For the classification, we
used SVM with a radial basis kernel, optimizing its parameters by means of a grid
search as suggested in [20]. Then, we applied the two-step FS process described
in [49]: we first chose for each single/composite attribute a candidate feature set of
size 200 with mRMR, or directly the whole feature set if its size was lower than 200,
and then we reduced it to an optimal size applying a Sequential Forward Selection
scheme (more details in [49]).

We repeated with SVM all the tests in the two experiments obtaining, on average,
classification accuracies lower than SDA-based approach by about 10% in the leave-
one-out experiment and about 3% in the separate training-test set experiment.

Concluding, we think that all these results further support our hypothesis that
SDA, being particularly suited to deal with the high within-class heterogeneity of
HEp-2 cell images, is a promising approach for staining pattern classification.

3.6 Segmentation of HEp2 Cells

The recognition of the HEP-2 cells in IIF images can be carried out in two ways:

• A cell level classification, where individual cells are classified to belong to one
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of the HEp2 patterns. Here it is assumed that the masks for the individual
cells in the IIF image are available. A pattern class label is assigned to an IIF
image, based on majority voting of the individual cells in the image.

• Specimen level classification, where no information on the cell-segmentation
is available, rather a segmentation mask containing the entire object present
into the specimen, which not only include the cells in the interphase but also
contains cells in mitosis and with possible artifacts (air bubbles, etc) .

Our study of the problem aims at classifying the HEp2 patterns both at cell and spec-
imen level. We opt for a fully automatic solution, where an efficient segmentation
step would be needed as preprocessing to the recognition system. The segmentation
at the specimen-level is coarse, where cells in the interphase are segmented along
with cells in the mitosis and artifacts (like air bubbles etc). On the other hand,
a cell-level classification needs an isolated cell mask, provided by the segmentation
step. Thus a prior segmentation step plays an important role in the automatic
classification of the HEp2-cells. To this end, our first goal is to provide efficient seg-
mentations of cells images, useful to both cell-level and specimen level classification
approaches

Image segmentation aims at partitioning an image into significant details, mak-
ing it easier to analyze certain regions, objects, shapes, contours or curves existed
in the image. These details can be highlighted using the texture, color or intensity
property of the image. Image segmentation has wide applications in computer vision
not limited to medical imaging, object detection, video surveillance, and biometrics.
Although image segmentation is a well studied problem, it is neither an easier task
which highly depends on the application image characteristics nor it is robust to
image quality. As discussed earlier, positive intensity IIF images are higher in con-
trast as compared to intermediate images; therefore, any segmentation algorithm for
IIF images need to be designed carefully. A common segmentation algorithm may
result in less accurate results for both types of images. Most existing techniques in
the literature have utilized Otsu thresholding [69], watershed [131], level sets [133]
and Laplacian of Gaussians filtering [132] for cell image segmentation. One draw-
back common to most of the proposed approaches based on these methods is that
the optimal system parameters are not invariant to image quality, thereby making
them less robust. Significant efforts are required to develop efficient techniques for
HEp-2 cell segmentation from IIF images. We provide a preliminary work on cell
segmentation using a recent filtering technique [134] which has been applied to a
similar problem.
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3.6.1 Local Convergence Filters

Local Convergence Filters (LCF) [134] estimates the degree of convergence of the
gradient vectors within a local area (support region) toward a pixel of interest (area
central location). The degree of convergence is related to the distribution of the
directions of the gradient vectors and not to their magnitudes. This makes it easier
to define a global threshold that is not affected by image illumination. The local
convergence of a gradient vector at a given pixel can thus be defined as the cosine of
its orientation with respect to the line connecting that pixel and the area’s central
pixel. Different LCF differ in the definition of the local area in which convergence
is evaluated. In this work we use Sliding Band Filter (SBF), a member of the
LCF family. The technqiue has valuable characteristics, which are suitable for the
analysis of fluorescence images with inherent low contrast. It is straightforward that
convergence filters are more complex and as such need more computation to perform
detection than point thresholding operations. In our initial work on the problem it
has shown reasonably good results on five of the classes with both intermediate and
positive intensities. It has failed on some of the images of the cytoplasmic class.
The reason is that cytoplasmic images have a very different pattern compared to all
other types, since here the fluorescent signal comes from the cytoplasm rather than
the nucleus of the cell.

3.6.2 Method

The main steps of our method are as follow:

• A Preprocessing step of K-means clustering for initial rough segmentation
which is used as a mask in the subsequent step for speed up and to remove
false positives. Morphological processing of the mask are performed such as
filling, dilation, erosion and noise removal.

• Sliding Band Filter (SBF) applied to the original images at the locations of
masks generated in step 1. It also includes Gaussian filtering of the original
images and Shape regularization of the detected cell shapes to get a convex
shape.

• Post-Processing retaining the best cell detection with the highest convergence,
in-case of multiple detections.
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3.6.3 Results

In the following figures we show the cell segmentations for images with both positive
and intermediate level of intensity. It can be visually observed that the proper use
of Local Convergence filters can produce reasonably good segmentation results.

Figure 3.9: Segmentation results for Homogeneous class with positive intensity
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Figure 3.10: Segmentation results for Homogeneous class with intermediate intensity

Figure 3.11: Segmentation results for Nucleor class with positive intensity
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Figure 3.12: Segmentation results for Nucleor class with intermediate intensity

Figure 3.13: Segmentation results for Coarse Speckled class with positive intensity
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Figure 3.14: Segmentation results for Coarse Speckled class with intermediate in-
tensity

Figure 3.15: Segmentation results for Fine Speckled class with positive intensity
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Figure 3.16: Segmentation results for Fine Speckled class with intermediate intensity

Figure 3.17: Segmentation results for Centromere class with positive intensity
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Figure 3.18: Segmentation results for Centromere class with intermediate intensity

Figure 3.19: Segmentation results for Cytoplasmic class with positive intensity
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Figure 3.20: Segmentation results for Cytoplasmic class with intermediate intensity
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Chapter 4

Automatic Kinship Verification of
PARENT-CHILD Pairs from Face
Images

Automatic Kinship verification aims at recognizing the degree of kinship of two
individuals from their facial images and it has possible applications in image retrieval
and annotation, forensics and historical studies. This is a recent and challenging
problem, which must deal with different degrees of kinship and variations in age and
gender. Our work explores the computer identification of parent-child pairs using
a combination of (i) features of different natures, based on geometric and textural
data, (ii) feature selection and (iii) state-of-the-art classifiers. Experiments show
that the proposed approach provides a valuable solution to the kinship verification
problem, as suggested by its comparison with different methods on the same data
and the same experimental protocols. We further show the good generalization
capabilities of our method in several cross-database experiments.

The remaining of the chapter is organized as follows. An introduction to the
Problem and related research work is presented in section 4.1. In Section 4.2, we
describe the database of parent-child images we used in our main experiments. Sec-
tion 4.3 details the algorithm we used for tackling the kin verification problem.
Finaly experimental results are presented in Section 4.4 and discussed in Section 4.5.
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4.1 Introduction and Related Work

Human faces have been much studied in computer vision and machine learning.
Investigations led to the development of a number of interesting applications, such
as face recognition, expression analysis, age estimation, gender classification and
ethnicity recognition. Among the new emerging areas there is automatic Kinship
Verification. The automatic detection of kinship from facial images is a difficult
problem that recently received a growing attention from the computer vision and
pattern recognition research community. Kinship verification aims at recognizing the
degree of kinship of two individuals from their facial appearance (See Figure 4.1).
Kinship verification has several interesting applications, such as searching kin images
into digital photo collections, looking for missing family members, and performing
family relationship assessment in forensics.

Unlike typical face recognition, Kinship verification aims at identifying similar
features between two different individuals. This is a challenging task since it has
to deal with differences in age and gender between subjects; additionally, to the
unpredictable amount of genetic information shared by relatives that reflects into
individuals showing different degrees of facial similarity. Many other difficulties
arise when Kinship Verification must be applied to databases acquired under un-
constrained environments. Despite the potential interest into this topic, to the best
of our knowledge, the very first work on kinship verification was published in 2010
by Fang et al.[3]. Since then, several papers on the subject have been presented,
tackling different aspects of the problem.

Figure 4.1: Examples of kin and not-kin samples of parent-child pairs from the work
of Fanget al. [3]

Kinship has been largely discussed in human science areas such as psychology
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and sociology. Researchers highlight that human beings have a natural capability to
recognize kinship relationships between unknown individuals[1], and even attempted
to identify the facial features providing kinship clues[1] [2].

Usually, various combinations of facial features, extracted with holistic or mixed
geometric-textural techniques, were used to characterize individual’s images. Geo-
metric measurements, color of selected image regions and holistic textural features
were analysed by Fang et al.[3], local image descriptors, Gabor wavelets and inten-
sity related information in the work of Somanath et al.[4], DAISY descriptors of
salient regions by Guo and Wang [5], various local textural features in Lu et al.[6],
Gabor features from selected regions in Xia et al.[7], a combination of geometric,
holistic and local and global textural descriptors in the work of Vieira et al.[8], and
local self similarities in Weber normalized faces in Kholi et al.[9].

Most of the approaches relied on state of the art classifiers, such as k-Nearest
Neighbours[3] [7] and Support Vector Machines (SVM)[3] [8] [9]. Metric learning
methods were also introduced to improve the classification accuracy[4] [6]. Their
basic idea is to learn, in the feature space, a distance metric aimed at pushing
as close as possible the positive samples (kins) and as far as possible the negative
ones (non kins), thus providing a better separation of classes. Another interesting
approach was presented by Xia et al.[7], who proposed an extended Transfer Sub-
space Learning (TSL) to consider the influence of age factor in the identification of
parent-child pairs. The aim of TSL is to simplify the recognition of children and
parent pairs by transferring the knowledge learnt from the similar, but easier task,
of recognizing the same parent-child pairs but using images of parents in youth.

A thorough comparison of these methods is difficult, since most of them analysed
different data. However, in order to assess their results, several authors compared the
capabilities of their approaches with that of a panel of human raters, showing that
automatic approaches are superior, or at worse comparable, with the discriminative
capabilities of human beings[3] [6] [7] [8].

The recent availability of a number of kinship datasets allows a comparative
analysis of the different approaches (as in [6], [10]). Some of the publicly avail-
able datasets are the following: (i) KV [3]; (ii) UBKIN [7]; (iii) SiblingsDB [8];
(iv) VADANA [82] and (v) KinFaceW-I and II [6].

Among these databases, the one we found most suited to test our approach
was the Kinship Verification dataset (KV) collected by Fang et al.[3]. The authors
also provided results from human panels on the same dataset and thus providing
a reliable ground for comparison. The photographs here were taken from several
public celebrities of different age, gender and race in slight different poses (mostly
frontal), illumination conditions and expression (some neutral but often smiling).
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Examples of images in this DB are shown in Figure 4.2. A description of the
dataset is provided in Section 4.2.

Figure 4.2: Database of image pairs collected from the internet by Fang et al.[3]

The general flow of our approach is following; i) normalizing all images in the
database; ii) extracting features from the single images; iii) fusing the feature vec-
tors obtained using different descriptors ; iv)combining the representative vectors of
couples; v)scaling the feature vectors to the range [0 1] ;and, finally vi) classifying
the datasets and selecting most descriptive features.

Our work explores the computer identification of parent-child pairs using a com-
bination of geometric and textural features. These attributes, related to holistic and
feature-based classification techniques, were first used individually in various classi-
fiers, in order to investigate which data are more effective for our problem. Then,
they were fused into a more effective classifier. Image pair classification is based on
the Support Vector Machines [19] algorithm and on the integration of a two-step
Feature Selection (FS) process, which led to improvements in the classification accu-
racy. We provide a comparison with different methods on the same dataset and the
same experimental protocols. We further show the good generalization capabilities
of our method in several cross-database experiments.

We also adopted a similar approach to address the problem of kinship verifica-
tion in an unconstrained environment. For the purpose we utilized a challenging
datasets Kinship Face in the Wild (KinFaceW) [6], containing large heterogeneity
with unconstrained face orientations, expressions and occlusions. To this end, we
employ two new textural descriptors, capable of describing the data under different
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perspectives, resulting in significantly higher accuracies than two baseline methods
from the literature. The details of the work are provided in Chapter 5.

4.2 Image Database

The recent interest in kinship verification led to availability of some databases com-
posed of facial images of individuals related by different kinship degrees. Examples
are those used in the works referenced in the Introduction. These databases are
composed by a heterogeneous set of images, mostly collected through the Internet.

Among these databases, the one we found most suited to test our approach was
the Kinship Verification dataset (KV) collected by Fang et al.[3]. It consists of 286
individuals’ color images1 (143 parent-child pairs). The image size is 100 × 100
pixels. The photographs depict several public celebrities with different age, gender
and race in slightly different poses (mostly frontal), illumination conditions and
expressions (some neutral but often smiling, see Fig. 4.4). The subjects are 50%
Caucasians, 40% Asians, 7% African Americans, and 3% of other ethnicities; 40% of
the samples are father-son, 22% are father-daughter, 13% are mother-son, and 26%
are mother-daughter pairs.
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Figure 4.3: Scheme of the proposed approach.

1Although the authors reported the use of 150 pairs, 300 images, the online version contains
only 143 pairs due to privacy constraints.
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4.3 Proposed Method

The basic idea of our approach is to investigate: (i) which are the facial features
most relevant for the automatic kinship verification problem and (ii) how to build a
classifier on them. To this end, different types of features, or attributes, have been
tested in our experiments, first individually and then combined, in order to define a
feature set which best characterizes the images being analysed, i.e. which maximizes
the classification accuracy.

The samples used in our experiments were always obtained from an Individual
Dataset, which includes frontal images of subjects (one image per individual). For
each Individual Dataset, we created a Pair Dataset, where each element represented
a pair of subjects. The Pair Datasets were composed by an equal number of positive
(kin) and negative (non-kin) samples, where the negative samples were chosen at
random. Each individual appears exactly once in both positive and negative sets.

The outline of our kinship verification algorithm is the following (see also Fig-
ure 4.3).

1. All images have been normalized.

2. Each individual has been characterized with several characteristic vectors, each
obtained extracting a different attribute from his/her image; the list of at-
tributes will be described in the following.

3. For each attribute, we computed the characteristic vector v(ab) for a pair of
individuals a and b as the vector of Euclidean distances, in their respective n-
dimensional space, of the corresponding elements of the characteristic vectors
of a and b. With this formulation, the characteristic vectors of a pair are
commutative, i.e. v(ab) = v(ba).

4. For each Pair Dataset and each attribute, and for some combination of at-
tributes (as explained in the following), the most relevant elements of the
corresponding pair characteristic vectors were selected with a two step feature
selection algorithm to construct an SVM classifier.

These steps are detailed in the following subsections.

4.3.1 Image Normalization

This pre-processing step was aimed at: (i) aligning images in the DBs with a
reference frame and delimiting the same area to include the whole face region, and
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(ii) subtracting the background, which could potentially affect some of the extracted
features.

Both processes rely on different subsets of the facial landmarks used to compute
relevant facial features (see Section 4.3.2). For each face, a total of 76 kepoints were
automatically extracted with the Active Shape Models (ASM) technique[13] using
an Open Source implementation available on the Internet[14].

Image alignment was first obtained by making coincident, in a reference rect-
angular area of size 100×100 pixels, the exterior eye corners with two predefined
positions at, respectively, points (80,80) and (120,80). Then, the ellipse best fitting
the 15 landmarks around the chin was used to segment the face. Examples of nor-
malized images can be seen in Figure 4.4. As a further information, the average
normalized face size is 60×60 pixels.

Figure 4.4: Examples of parent (1st row) - child (2nd row) pairs. For each individual,
we show the original image, the detected landmarks and the normalized image

4.3.2 Face Representation

Different representations of the information conveyed by faces have been experi-
mented for tackling the various face image processing problems. Previous studies
have shown that the discriminative power of separate facial attributes is likely to be
improved by that of the integration of pieces of information of different natures[6].

According to these findings, we also experimented the integration of different
feature types. The choice of facial attributes used in our kinship verification ap-
proach took into account the lessons learned during our previous experience with
sibling verification[8], where we analysed the contribution of different geometric, tex-
tural and holistic features. In that work, we found that the contribution of holistic
attributes was negligible. We also identified, among many different options, a set
of geometric and textural features particularly effective for siblings’ classification.
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Thus, we initially considered, for the parent-child verification problem, this optimal
set of attributes, which was then integrated with some new attributes found highly
discriminative in preliminary experiments2.

In summary, the attributes we used to characterize images can be divided into
two main categories (Table 4.1):

1. geometric attributes, focusing on shape features computed from the position
of facial landmarks;

2. texture descriptors, summarizing texture features of the whole image or of
small regions surrounding landmarks.

Table 4.1: Attribute dimensions.

Attribute size of a feat. × feature nr.
Geometric attributes
SEGS 1×184
ANGLES 1×342
RATIOS 1×862
Textural attributes
WLD 1×2880
LID 384×76

Geometric Features

The geometric attributes analysed in our work have been computed from a dense
net of segments connecting the 76 ASM landmarks extracted from each image.

In order to compare the same elements on all faces, we defined a reference net
of 184 segments, corresponding to the edges of the Delaunay Triangulation (DT) of
the average position of the normalized landmarks over all faces in the KV dataset.
The reference triangle mesh (see Figure 4.5) is composed by 114 elements.

We considered the following geometric attributes.

SEGS – This attribute contains the (normalized) lengths of the 184 reference
facial segments. These lengths are effective in capturing global face shape and in

2These results are not reported here for the sake of brevity.
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Figure 4.5: Reference Triangle mesh generated using Delaunay Triangulation of the
average positions of the normalized landmarks over the KV dataset.

describing, directly or through segment chains, representative facial measurements
(eg. distances between mouth and eyes, mouth width, etc.).

ANGLES – Angles of the triangles obtained from DT. Angles and segment
lengths are strictly correlated, since the former can be computed from the latter.
However, as we will show in the following, some variables can be discarded by a
feature selection algorithm applied before classification, and the relationship between
lengths and angles can be lost. The total number of angles is 342.

RATIOS – This attribute contains the ratios between lengths of DT segments
having a vertex in common. Two segments are used only once to compute a ratio,
i.e., once a ratio is computed, its inverse is not considered. RATIOS can suitably
summarize local shape similarities, which can be relevant to our problem. With this
attribute, a face is represented with 862 values.

Textural Features

Two image descriptors were used to characterize each individual’s normalized image.

WLD – The Weber local Descriptor (WLD) is a dense local image descriptor,
which has shown good performances on texture classification and face detection [15]
and, more recently, on face recognition [79]. This law states that a just-noticeable
difference in a stimulus is proportional to the magnitude of the original stimulus.
Translating this concept into image intensities, WLD first characterizes a pixel with
two values: the differential excitation (the ratio between the sum of neighbouring
pixel intensity and the intensity of the pixel itself) and the orientation of the pixel
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gradient. Multi-scale analysis is then applied to characterize salient local patterns
at different resolutions and, finally, all the WLD features of the image are encoded
into a histogram containing 2.880 elements.

LID – Local Image Descriptors. In this attribute, SIFT-based descriptors have
been used to characterize the regions surrounding facial landmarks. SIFT[16] works
on monochromatic images and provides invariance to several image changes, such
as uniform scaling and rotation, and partial invariance to affine distortion and illu-
mination changes.

Recently, color local image descriptors have been introduced. Their general
idea is to encode, for a reference point and for a specific color model, the Scale-
Invariant Feature Transform (SIFT) descriptors computed separately on each image
channel. This allows to improve the invariance properties of the descriptor (e.g.
introducing invariance to light intensity change and shift and light color change and
shift[17]). Among the color descriptors surveyed in Ref. [17], we choose C-SIFT[18]
since in our preliminary experiments it performed slightly but consistently better.
To characterize a sample with this attribute, we computed a C-SIFT descriptor (a
vector of 384 components) on each of the 76 facial landmarks.

It should be noted that C-SIFT can only be used when all images to be anal-
ysed are colour images. When dealing with datasets including grayscale images, a
different characterization of the LID attribute must be considered. We will discuss
this point in more details in Section 4.4.2.

4.3.3 Building the Classifiers

Kinship recognition can be modelled as a binary classification problem. Our clas-
sifiers were based on SVM[19], a well established machine learning technique that
has been proven successful in many applications[20].

In our work, we used SVM with a radial basis kernel, optimizing the kernel
parameters by means of five-fold cross-validation technique and a grid search over
the parameters space, as suggested in Ref. [20]. Before applying SVM, each element
of the characteristic vectors was linearly scaled to the range [0,1]. This avoids the
variables in larger scales to dominate those in smaller ranges and reduces numerical
problems in the computation of the SVM kernels[21].
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Feature Selection

Feature selection (FS) is a dimensionality reduction pre-processing step vital in many
machine learning and pattern recognition tasks. It aims at discarding redundant
and/or irrelevant information by selecting a subset of variables that best describes
the data according to a specific criterion. In the classification context, this criterion
is the improvement of the classification accuracy. Another advantage of FS is that,
reducing the data dimension, it improves the comprehension of data and results by
telling which are the most important features and how they are correlated.

While SVMs are generally acknowledged for their generalization capabilities,
since they implicitly map data in a transformed space that emphasizes the features
more crucial to the classification purpose, their integration with FS schemes pro-
vides several advantages[22, 23]. In particular, it helps reducing the probability of
overfitting, which is likely to affect our classifiers since in most of the experiments
the number of features is much greater than the number of available samples.

In our method, we applied a robust two-step FS method (see Figure 4.6).

First step (mRMR). Features are ranked according to their relevance in
characterizing the classification variable with the minimum-Redundancy-Maximum-
Relevance (mRMR) algorithm[74]. The sorting criterion of mRMR points at the
contemporaneous minimization of the mutual similarity and maximization of the
correlation between the features and the classification variable. Since mRMR pro-
vides a mere ranking of the features with no information on the size of the optimal
feature set, we heuristically looked for this size by iteratively increasing the num-
ber of candidates in the feature set until the global optimum of the classification
accuracy was found.

Second step (SFS). The set of candidate features is further refined through
a Sequential Forward Selection (SFS) scheme[24]. The classical implementation of
SFS starts from an empty feature set S and adds at each iteration the variable
that provides the highest improvement of the classification accuracy. The process is
repeated until no more improvements can be obtained. However, as we experienced,
this stopping criterion tends to trap the algorithm in a local minima. Therefore,
we proceeded until at most 70 features3 were added to S, and then we selected the
feature set corresponding to the iteration providing the best accuracy.

3This choice aimed at maintaining reasonable computational times.
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mRMR

SFS
Feature selection methodology

Figure 4.6: Two-stage Feature Selection process.

4.4 Results

Our experiments were organized as follows. We first analysed the contribution of
different facial attributes to the parent-child classification and how they can be com-
bined to improve the classification accuracy, i.e. the percentage of samples correctly
classified (Section 4.4.1). This thorough analysis was performed on the KV dataset
(c.f., Section 4.2). Then, in order to understand the generalization properties of our
classifier, we first conducted within-database experiments on different datasets (Sec-
tion 4.4.2) and finally we performed more challenging cross-database experiments
(Section 4.4.3).

4.4.1 Classification Accuracies

For the sake of clarity, we briefly recall the main idea behind our approach. Different
representations of the information conveyed by faces have been found effective in
various problems related to facial analysis. However, the relevance of these pieces
of information and their mutual contribution to the kinship verification problem is
still an open issue.

In this work we postulate that the integration of facial attributes of different
natures improves the capabilities of a classifier in recognizing kin relationships. To
this end, we defined a set of geometric features and we identified different textural
descriptors that appeared promising for the task considered.

In our experiments, we first computed the accuracies based on the classification
of the individual attributes described in Section 4.3.2. Then, we evaluated the ac-
curacies obtained by characterizing each facial image with three different groups of
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attributes: GEOMETRIC, grouping the geometric attributes, TEXTURE, combin-
ing textural information, and ALL, concatenating all the described attributes. FS
for grouped attributes was applied to the sets of all the merged features.

Results were assessed using stratified five-fold cross-validation (CV) and, hence,
we report the average classification rates of each classifier over the different CV
rounds. Results are summarized in Table 4.2 and organized by attribute, or attribute
group.

Table 4.2: Accuracy results for different attributes/compound attributes on the KV
dataset. We also show the number of variables selected by the FS process and the
calssification accuracy obtained without applying FS.

Accuracy Nr. features selected Accuracy without FS
SEGS 73.1 21 59.4
ANGLES 69.6 6 56.6
RATIOS 75.2 35 55.6
LID 76.9 14 70.4
WLD 79.3 30 50.0
GEOMETRIC 75.8 26 55.9
TEXTURE 81.1 25 47.9
ALL 83.2 55 48.6

The following initial remarks can be drawn:

• when considered individually, textural features have higher discriminative power
than the geometric ones, with WLD obtaining the best performances (79.3%);

• as for geometric attributes, the better performances of RATIOS (75.1%) sug-
gest that their capability of capturing local similarities of facial shapes provides
stronger kinship clues;

• the more heterogeneous the information, the better the accuracies. Grouped
attributes performed consistently better than their single components, and the
best accuracies were obtained considering all attributes together (83.2%).

The quality of our results can be assessed by comparing the classification accu-
racies of our experiments with that obtained on the same dataset by Fang et al.[3]
and Lu et al.[6]. The performance of their approaches (respectively, 70.69%[3] and
71.6%[6]) and that of a panel of human raters on the same data (67.19%[3]) are
already improved by that obtained in our work with several individual attributes,
and outperformed by our best result (83.2%), achieved with the integration of all
attributes.
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Analysis of the Feature Selection process

As it can be seen in Table 4.2, Feature Selection (FS) always provides a significant
accuracy improvement. Larger gaps can be observed when the number of features
is much greater than the number of samples, thus highlighting the FS capabilities
to prevent overfitting.

Concerning the selection process, it is also interesting to analyse the distribution
of features surviving the FS pruning for composite attributes (Figure 4.7), which
could provide some insights about the more relevant facial characteristics to recog-
nize kins.

We can observe the following: (i) RATIOS is the most relevant geometric at-
tribute, suggesting its good descriptive capabilities; (ii) as for textural features,
WLD is more relevant than CLID in the TEXTURE group, and their relative con-
tribution is similar when geometric features are added (ALL group); (iii) when
attributes are grouped, elements from all attributes are chosen to compose the fi-
nal vector; (iv) when geometric and textural features are combined, the latter are
preferably selected to compose the final dataset.

Figure 4.7: Feature selection: distribution of features per type for different attribute
groups.

Comparison with Different Classifiers

We compared the performances of our SVM-based classifiers with other state-of-the-
art classification algorithms (namely, Random Decision Forests, k-Nearest Neighbors
and Bagging Trees). Different FS approaches were applied. The k-Nearest Neigh-
bors classifier was integrated with the same two step FS method described in Sec-
tion 4.3.3. For Random Decision Forests, we selected the most relevant features
by first sorting them according to their Variable Importance[25] and then choosing
heuristically the optimal feature set size. A similar approach was applied to Bagging
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Trees. Figure 4.8 shows the Out-Of-Bag (OOB) error rate for the Random Decision
Forests.

The results of these experiments are summarized in Table 4.3, where, for the sake
of brevity, we simply report the best result, obtained by each algorithm with the
ALL group. Overall, SVM provided the best performance. However, the relatively
small differences with other classifiers highlight that the major contribution to the
classification accuracy is provided by the design of our features rather than by the
classification algorithm itself.

Table 4.3: Accuracies of different classifiers.

SVM RDF k-NN BTrees
Accuracy 83.2 77.5 79.1 78.5
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Figure 4.8: Out-Of-Bag (OOB) error rate for Random Decision Forest.

4.4.2 Experiments on Different Datasets

We further explored the potentialities of our approach analysing two other publicly
available datasets, the UB Kinface[7] and the KinFaceW-II[6]. In both datasets,
images have different resolutions, orientations, illuminations and expressions. Most
of them are grayscale and in KinFaceW-II some contain partial occlusions. The
variability of the imaging conditions makes these datasets much more challenging
than the KV dataset. In particular, the not perfectly frontal alignment of the faces
can affect some attributes, reducing their discriminative capabilities.

The analysis of these datasets required to face two other issues. First, the pres-
ence of grayscale images prevents the extraction of color descriptors for all samples.
To address this problem, we applied a different definition of the LID attribute,
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building it from the SIFT descriptors computed on each facial landmark. Second,
the automatic identification of landmarks provided large mismatches or false face
identification for several images. To this end, we manually assigned the position of
the external eye corners, an information which was available for both datasets, to
initialize the ASMs.

Experiments on UB Kinface

The UB Kinface dataset includes 600 images of 400 individuals, divided into 200 kin
pairs. Each pair is characterized by a single frontal image of a child and two images
of his/her young and old parent. The average image size is 422× 336 pixels and the
average face size, obtained with ASM, is 113× 114 pixels.

The dataset is divided into two individual subsets: Set 1, including the 200
children and their old parents, and Set 2, where the 200 children were paired with
their young parents. As in the experiments of Section 4.4.1, for each Individual
dataset a Pair dataset was created and classification results were assessed using
stratified five-fold cross-validation.

The results are summarized in Table 4.4. The classification of Set 1 and 2
achieved, respectively, 70.3% and 70.5%. These results can be assessed by com-
paring them with two other approaches, namely, the Transfer Subspace Learning[7]
(TSL), and the Multiview Neighborhood Repulsed Metric Learning[6] (MNRML).
TSL used the images of the young parents in Set 2 as an intermediate class to learn
an optimal discriminative subspace between target classes in Set 1 (children and
their old parents). Thus, TSL accuracies are available only for Set 1.

The results show that our approach outperforms TSL (+10.3%) and is compa-
rable with MNRML (+3.0% and +3.7% on, respectively, Sets 1 and 2). A further
comparison can be made with the discriminative capabilities of human raters. Hu-
man ratings were collected for Set 1 only[7] and our results largely improves them
(+14.3%).

A possible question arises from these results: how did the choice of using SIFT,
instead of colour descriptors, in the LID attribute affect the performances? To
answer this question, we selected the subset of 169 positive pairs from Set 1 having
color images for both individuals and we built a Pair dataset on them. We applied
the same classification procedure described in Section 4.3 but with two different
formulations of the LID attribute (namely, using SIFT and C-SIFT). The same
procedure was repeated for the KV dataset. Results show that, despite the lower
discriminative power of SIFT, the overall accuracy remains substantially unaffected
(-2.6% for UB Kinface and -2.4% for KV dataset). A possible explanation of this
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behaviour is that the integration with other features, backed by the FS process,
helps to soften the major limitations of specific attributes.

Table 4.4: UB Kin results.

Set 1 Set 2
TSL 60.0 N.A.
MNRML 67.3 66.8
Human Panel 56.0 N.A.
Our method 70.3 70.5
Nr. features selected 16 18

Experiments on KinFaceW-II

The KinFaceW-II includes 2000 images of individuals related by four kinship re-
lations (Father-Son, Father-Daughter, Mother-Son and Mother-Daughter). Each
category contains 250 pairs. The online version of KinFaceW-II provides the images
after the first preprocessing step of the method in Ref. [6], i.e., facial identification
and normalization into a standard area of 64 × 64 pixels. Since these images were
cropped discarding in most cases relevant facial features exploited by our method
(eg. the chin line), we processed the original raw images used to create the datasets,
which were kindly granted by the authors. Their average size is 200 × 146 pixels
and the average face size is 103× 103 pixels.

Each subset of the KinFaceW-II was first analysed separately. A Pair dataset
was built for each subset and sequentially divided into five folds for cross validation
according to the experimental protocol described in Ref. [6]. The accuracy of our
approach can be compared with those of a panel of human raters and of the MNRML
method[6]. As can be seen in Table 4.5 our method improves both of them.

Finally, consistent with previous experiments, we gathered together all the KinFaceW-
II dataset to analyse the more general two-class kinship verification problem, i.e.
deciding if two individuals are kin or not. The accuracy obtained was 77.8%. The
loss in the performances, with respect to the average accuracy obtained by the clas-
sification of the separate kin subclasses, suggests that the global kin manifold in face
space has a more complex shape than the sub-manifolds of specific kinship relations.
This observation highlights as well the fact that methods capable of better coping
with the high within-variance of kin samples should be designed.
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Table 4.5: KinFaceW-II results.

F-S F-D M-S M-D Mean
MNRML 76.9 74.3 77.4 77.6 76.5
Human Panel 70.0 68.0 78.0 80.0 74.0
Our method 82.7 76.9 82.3 83.9 81.5
Nr. features selected 67 43 59 68 -

4.4.3 Cross-database Experiments

In order to further assess the generalization capabilities of our approach we per-
formed the following cross-database experiments:

• we built a classifier using ALL attributes and SIFT as LID;

• we trained the classifier with all the samples in the KV Pair dataset used in
the experiments in Section 4.4.1;

• we used three different test Pair datasets: the two used in Section 4.4.2 for
the experiments on the UB Kinset (namely, Set 1 and Set 2) and the dataset
used in Section 4.4.2 gathering all KinFaceW-II samples;

• we classified the test sets.

Such experimental settings are challenging, due to the large differences between
the characteristics of the samples in the training and test sets, and their rationale is
to evaluate the performance of the proposed approach in realistic conditions, when
unseen data have to be classified.

The cross-database accuracies can be assessed by comparing them with the
within-database accuracies of the corresponding test dataset. The results listed
in Table 4.6 show the good behaviour of the classifier in the cross-database experi-
ments.

For completeness, we performed more cross-database experiments using the KV
dataset as test set and various datasets for training (namely, UB Kinface Set 1 and
Set 2 and KinFace-II). The baseline for these experiments is 79.8%, the within-
database accuracy computed on the KV dataset using SIFT descriptors in the LID
attribute. As can be seen in Table 4.7, despite the lower quality of the train sets,
the drop of accuracy is comparable to that obtained in the previous cross-database
experiments, highlighting another time the good generalization properties of our
approach.
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Table 4.6: Cross and within database accuracies will ALL attributes and using KV
as train dataset.

Test dataset Cross-DB acc. (%) Within-DB acc. (%)
UB Kinface Set 1 70.0 70.3
UB Kinface Set 2 68.8 70.5
KinFaceW-II 76.6 77.8

Table 4.7: Cross database accuracies on KV dataset will ALL attributes.

Train dataset Cross-DB acc. (%)
UB Kinface Set 1 77.3
UB Kinface Set 2 74.9
KinFaceW-II 79.7

4.4.4 Processing and Simulation Times

Here we briefly discuss the processing times for the different steps that comprise our
proposed algorithm. The very first step is the detection of facial landmarks and the
normalization of the images. In our work we detect 76 facial landmarks followed
by image normalization, which indeed depend on the size of the image, take time
in multiple of seconds. However, this time is not crucial as compared to the time
taken by the entire algorithm. In the feature extractions step, each feature attribute
would be extracted within the range of approximately 1-6 seconds. The color-sift for
example took 4-6 seconds, while WLD for instance would complete in 1-2 seconds.

The training of the classifier is the most expensive stage of our pattern recognition
system. In the two-step feature selection algorithm the first step mRMR ranking,
which works independently from the classifier, categorize the features using the mean
± deviation scheme. An mRMR implementation is available in Matlab executable
file (.mex), which performs better than script files. It needs only a few seconds to
rank the features in a single iteration. Since to heuristically find the best-mRMR size
as discussed in Section 4.3.3, we need multiple such iterations on the full feature set.
However, the second FS step Sequential Forward Selection (SFS) is wrapper based
algorithm which involves the classifier or the learning process, is the most expensive
one due to its iterative nature. Depending on the size of a single or fused feature
set, it would last from tens of minutes to hours. In our experiments, simulations
would eventually last for days, due to iterative evaluation of different parameters
and testing different combinations of single image attributes.

The testing of an already trained classifier, SVM, is quickly executed. Here, we
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first need to normalize and extract features for two images in the pair the same
way as in the training. The classification consists in mapping these features to a
higher dimensional space using the optimized kernel and finding its distance to the
separating hyperplane. This is quickly performed (in a few seconds) by the libSVM
package [20], available in Matlab executable file (.mex).

4.5 Discussions

Experimental results showed that the proposed approach is indeed an effective so-
lution to the automatic kinship verification problem. Our method showed good
generalization capabilities and outperformed the recognition capabilities of human
raters and of previous approaches in the literature.

Despite that, as we discussed in the Introduction, there are several factors af-
fecting the accuracy of an automatic kinship predictor and fully understanding their
influence requires further work. A problem to face with such studies is the lack of
large annotated databases of kins, similar to those used in face recognition studies,
spanning several dimensions including ethnicity, age, expressions and image quality.
Given the recent attention of the research community towards automatic kinship
recognition, we expect this issue to be addressed soon.

Preliminary insights on some of these elements can be obtained from our exper-
iments.

Ethnicity. Except KinFace-II, which includes a majority of Caucasian individ-
uals (about 90%), the other datasets used in our experiments are more balanced.
Both within and cross-database experiments seem to suggest that ethnicity is not
largely affecting the results.

Age. UB kinface included, for each child, images of his/her young and old parent.
Although age information was not available, which makes it impossible to evaluate
the correlation between age and classification variable, the results in Table 4.4 seem
to indicate that our approach is unaffected by age.

Similarity among individuals. Unrelated people showing high facial resem-
blance could affect similarity learning-based methods[7] [6] and, to some extent, also
descriptor based methods[3] [5] [4] [9], as the one presented in this article. This chal-
lenge is similar to that faced by computer vision based biometric systems trying to
discriminate between monozygotic or identical twins. We tried to build a dataset
of similar but unrelated pairs from our data, using as similarity score the output
of FACEVacs[26], a face recognition software which provides for an image pair a
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score value in [0,1]. The higher the score, the higher the probability that the images
come from the same subject or, in our case, the higher the similarity between two
individuals. Results on our datasets showed that, in general, absolute values are
quite low (i.e., both positive and negative pairs show a low degree of similarity)
and no negative sample scores higher than positive samples in the same dataset.
Summarizing, the data used in our work were unsuited to investigate this problem.

Image quality. Image resolution and quality are the most important factors
affecting the extracted features and thus the accuracy of the results. A related
problem is the accuracy of the facial landmark identification, a necessary preliminary
step for several descriptor based methods. This could be an issue when datasets with
heterogeneous imaging conditions have to be analysed. Despite that, recent advances
in automatic facial landmark identification demonstrate impressive performances in
dealing with extremely challenging images[27] [28] [29].

Concluding, we have shown that our proposed approach provides a valuable so-
lution to the kinship verification problem. We recognize child-parent relationships
with reasonable accuracies as suggested by its comparison with different methods
on the same data and the same experimental protocols. We further show the good
generalization capabilities of our method in several cross-database experiments. In
particular, a proposed approach that utilizes feature level fusion by combining fea-
tures of different natures has been found effective in boosting the discriminative
power of individual attributes by gathering, after a proper selection, different and
complementary cues that helps better characterizing the analyzed kin samples.
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Chapter 5

Kinship Verification in
Unconstrained Environment

In this chapter we provide a further investigation to the verification of parent-child
pairs using the extensive and challenging KinFaceW dataset, where images have no
restrictions of pose, lighting, background, expression, age, ethnicity, and partial oc-
clusion. In our approach, a set of textural descriptors, which characterize the faces
from different and complementary perspectives, are first used to identify kinship
clues on parent-child pairs and then combined together to obtain a more discrimina-
tive sample characterization. Then, we applied a robust feature selection algorithm
to improve the classification accuracy of an SVM classifier.

The remainder of the chapter is organized as follows. Section 5.1 describes the
KinFaceW database used in the experiments. Section 5.2 outlines our approach.
Finally Section 5.3 presents and discusses the experimental results.

5.1 Image Database

In our experiment we used a public dataset, proposed as benchmark for the The
Kinship Verification in the Wild Evaluation, held in conjunction with the FG2015
conference. This dataset is divided into two subsets, KinFaceW-I and KinFaceW-
II. Their difference is that face images with a kin relationship were acquired from
different photos in KinFaceW-I and from the same photo in KinFaceW-II.
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Figure 5.1: Examples of images in the KinFaceW database: father-daughter pairs
(a), samples with varying expressions (b), defocused images (c), heterogeneity in
illumination (d) and pose (e).

Each dataset consists of pairs of individuals characterized by parent-child rela-
tionships: Father-Son (F-S), Father-Daughter (F-D), Mother-Son (M-S), and Mother-
Daughter (M-D). Specifically, there are 156, 134, 116, and 127 pairs of facial kin-
ship images for these four relations in KinFaceW-I and 250 for each category in
KinFaceW-II.

The faces have been aligned by manually labeling the eye corners. Then they were
cropped and re-scaled to a resolution of 64×64 pixels. The dataset includes color and
grayscale images showing different illumination conditions, poses and expressions.
As can be seen in Figure 5.1, some of the images contain partial occlusions and
artifacts such as blurring and defocusing. Furthermore, the majority of images are
cropped such that relevant facial traits are discarded, such as chin and ears. These
image characteristics make the analysis of this dataset a challenging task.

5.2 Proposed Method

Different representations of the information conveyed by faces have been experi-
mented for tackling the various face image processing problems. Common facial
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attributes for such tasks rely on geometric distances, local image descriptors or tex-
tural features. Previous studies have also shown that the discriminative power of
facial attributes of different nature is likely to be improved by that of their integra-
tion [6].

As for the facial attributes, a pre-requisite for computing geometric attributes
and local image descriptors is the proper identification of facial landmarks. Despite
the good performances in dealing with extremely challenging images demonstrated
by recent advances in automatic facial landmark identification ([27, 28, 29]), the
accuracies of these methods applied to the KinFaceW images were in several cases
far from satisfactory. A possible explanation is the inability to exploit the whole
face information, due to the specific image cropping of most images in the dataset.
Finally, it should be underlined that even if accurate landmarks were available, the
very low image resolution would likely reduce the discriminative power of geometrical
features.

Taking these observations into account, in our solution we focused on several
textural descriptors which are capable of learning similarity between images and,
thus, particularly suited to the problem tackled. Since these descriptors capture
different and complementary information from the facial images, we designed a
multi-perspective approach where the descriptors were first analyzed individually
and then integrated in order to provide a more robust solution to the kinship recog-
nition problem.

In the following, we will describe (i) the different type of features used to char-
acterize each facial image, (ii) how they were used (individually or grouped) to
characterize an image pair and (iii) our classification approach.

5.2.1 New set of features

Along with the use of Weber Local Descriptor (WLD) [15], see Section 4.3.2, the
individual images have been characterized with the following attributes.

Local Phase Quantization. As described in Section 5.1, several images in
KinFaceW appears blurred due to either subject motion during exposure or to out
of focus camera lens. Blur can seriously affect the recognition and addressing this
problem is sorely needed into this context.

Local Phase Quantization (LPQ) is an operator originally proposed for texture
classification and later applied to face recognition tasks. LPQ achieved comple-
mentary performance to other descriptors on challenging face recognition datasets
([75, 78, 76]). This operator is insensitive to centrally symmetric blur (such as the
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one caused by linear motion and out of focus) and is invariant to changes in the
mean level of illumination and in illumination contrast.

LPQ exploits the blur invariance property of the phase spectrum and encodes
phase information in a way similar to the coding mechanism of Local Binary Pat-
terns (LBPs). LPQ codes are obtained by computing, in a w × w neighborhood of
each image pixel, the phase of the 2D Short Term Fourier Transform (STFT). To
maintain a compact representation, only the quantized phase of selected frequency
components are extracted. Each quantized LPQ code is then encoded as an 8-bit
digit.

In [76] the trade off between the discrimination power of the LPQ descriptor and
its blur-tolerance is discussed. Decreasing the window size w helps capturing more
detailed local information, but at the same time it reduces the descriptor tolerance
to blur. To optimize this trade off and increase the effectiveness of LPQ based
representation, a multi-scale approach can be applied by varying the local window
size w. The LPQ image descriptor is finally obtained by dividing the image into non-
overlapping blocks, aggregating for each block histograms of LPQ codes at different
sizes and, finally, concatenating the obtained histograms. The resulting vector has
size 768.

Patch based LBPs. Patch based LBPs is a family of novel image descriptors,
recently introduced in [84, 83] to deal with face image pair-matching problems.
These descriptors encode in a compact from the similarity between neighboring
image patches and capture useful information complementary to that of pixel-based
descriptors. The basic idea behind patch-based approaches is to detect local texture
properties by analyzing the cross-correlation between a central patch (a window of
known size) and its neighbouring patches. These properties are then encoded, as
in standard LBP approaches, as a bit string. Patch-based LBPs histograms are
capable of summarizing regions, lines, edges and complex textures in a unified way.

Two types of such descriptors were proposed in [83]: Three-Patch LBP (TPLBP)
and Four-Patch LBP (FPLBP).

TPLBPs codes are computed per pixel and each bit of a code is obtained by
comparing three different patches. First, S patches of size w × w are distributed
uniformly along a ring of radius r centred on each pixel x. Then, given a parameter
α, the value of a single code bit is set according to which of the two α-patches
apart is more similar to the patch centred on x. Patch similarity is computed using
the L2-norm of their gray level differences. The resulting code is an S-bit string.
The image signature is then computed by (i) dividing the image into a set of B
non-overlapping blocks of equal size, (ii) computing a normalized histogram of code
frequencies for each block and then (iii) concatenating the block histograms into a
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single vector.

FBLBPs are similar to TBLBPs. In this case, S patches are uniformly distributed
on each of two rings with radius r1 and r2, both centred at pixel x. A patch
positioned on ring 1 and another one on ring 2 being α-patches apart, form a patch
pair. Then, the value of a code bit is set according to which among two patch-
pairs, symmetric with respect to the central pixel x, includes more similar patches.
Thus, for S patches on each circle the number of symmetric patch-pairs (i.e. the
code length) is S/2. The FBLBP image signature is then obtained using the same
procedure described for TBLBP.

From these descriptions, it is clear that the strength of these descriptors may
decrease increasing the ring radius, due to minimal correlation of the sampling points
with the center pixel.

TPLBP results in a 3.072-size vector and a more compact 192-size vector is
obtained with FPLBP.

5.2.2 Classification Approach

The outline of our classification approach is summarized in Figure 5.2. We follow
a very similar approach as presented in Section 4.3. Differently, here we utilized
only textural descriptors and their combinations to characterize the images in the
kin-pairs. In addition, as describe in Section 5.1, the images are already normalized
using eye-positions and are re-scaled to a fixed-size.

5.3 Results and discussion

The described classification approach has been applied to the dataset of facial im-
age pairs introduced in Section 5.1 according to the Image restricted experimental
protocol defined by the evaluation organizers.

In this protocol, for each data subset (KinFaceW-I and KinFaceW-II) and each
kin category (F-D, F-S, M-D and M-S), the set of all positive (kin) pairs and a
randomly generated set of negative (non-kin) pairs was provided. Positive and
negative sets have the same size in all the cases. The pair datasets were then divided
into 5 equally sized sets having a uniform distribution of positive and negative pairs.
The classification is repeated 5 times and, for each round, one set is used for testing
and the others for training. Again, the composition of the five sets was provided by
the organizers in order to allow for a fair comparison between different approaches.
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Figure 5.2: Outline of the classification algorithm.

Our experiments were aimed at validating the proposed multi-perspective ap-
proach. To this end, we first evaluated the classification based on the individual
attributes and then that based on different combinations of them. When compos-
ing attribute groups, we considered patch-based descriptor as a unique attribute.
That is, we analyzed the individual contribution of TPLBP and FPLBP to different
groups, but we never included both of them into the same group.

In order to assess our results, we compared them with:

• two baseline methods (two variations of the Side-Information based Linear
Discriminant Analysis, SILD, described in [80]) provided by the contest orga-
nizers;

• the recognition capabilities of a panel of human raters1, available in [6]

• four methods submitted to the Kinship Verification in The Wild evaluation
([12]), namely:

1although these data were obtained with a slightly different experimental protocol, they are
interesting since, as we will show in the following, they provide an indication of the superior
capabilities of automatic approaches w.r.t. that of human observers
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– LIRIS, a Metric Learning approach combining different features (LBP,
HOG, Over-Complete LBP and Fisher Vector faces) and reducing the
feature vector dimensionality to 100 exploiting whitened PCA;

– ULPGC, where multiple descriptors (HOG, LBP, Local Salient Patterns,
Local Directional Patterns, LPQ and Local Oriented Statistics Informa-
tion Booster) were computed at different resolutions, encoded into his-
tograms and reduced with PCA to compute the final characteristic vec-
tors; SVM was used as classifier;

– NUAA, exploiting a similarity learning approach relying on SIFT features
computed on a regular grid; feature selection and SVM provided the final
judgement;

– BIU, which proposed an asymmetric metric learning scheme with respect
to kin similarity, where the age-related appearance differences between
parents and children were handled with two different projection matrices
for old (parents) and young (children) samples; samples were character-
ized with either LBP or HOG features and SVM was used for classifica-
tion;

Experimental results are summarized in Table 5.1-5.2 and organized by attribute,
or attribute group. The last lines of the tables show the accuracies of the human
panel and of the other methods used for comparison. ROC curves are shown in 5.3
where, for our method and for the sake of clarity, we only report the combination
of features providing the best results.

The following remarks can be drawn.

• In most of the cases, the TPLBP-LPQ-WLD group performs better on different
kin-pairs and achieves the highest mean accuracies on both datasets (86.3%
and 83.1% on KinFaceW-I and II, respectively).

• Grouped attributes perform generally better than their individual components.
This indicates that samples are better characterized by the combination of
different features.

• TPLBP performs slightly better than FPLBP, either individually or in com-
bination with other attributes; this result can be explained considering that
FPLBP is a more compact descriptor while TPLBP has a higher dimensional
feature vector and, thus, it is likely to convey more subtle information;

• The performance of two baseline methods (71.1% and 74.9% on KinFaceW-I
and 71.8% and 73.5% on KinFaceW-II) and of the human panel (63.8% and
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Table 5.1: KinFace-I accuracies (%)

F-D F-S M-D M-S Mean
FPLBP 75.1 75.0 74.6 75.1 75.0
TPLBP 76.9 76.9 75.7 78.9 77.1
LPQ 79.5 77.9 83.8 81.1 80.6
WLD 83.6 79.2 81.5 81.0 81.3
FPLBP-LPQ 80.6 78.6 83.1 84.6 81.7
TPLBP-LPQ 80.6 79.2 84.0 84.5 82.1
FPLBP-WLD 83.6 82.1 83.0 85.0 83.4
TPLBP-WLD 81.0 83.0 87.9 84.1 84.0
LPQ-WLD 84.3 78.9 88.2 85.4 84.2
FPLBP-LPQ-WLD 85.4 82.1 89.7 84.5 85.4
TPLBP-LPQ-WLD 85.8 85.3 86.7 87.5 86.3
SILD (LBP) 69.4 78.2 70.1 66.8 71.1
SILD (HOG) 72.4 80.5 77.1 69.8 74.9
LIRIS 83.0 80.6 82.3 85.0 82.7
ULPGC 71.3 70.9 58.5 80.9 70.0
NUAA 86.3 80.6 81.0 83.9 83.0
BIU 86.9 76.5 73.9 79.8 79.3
Human Panel 58.0 61.0 70.0 66.0 63.8

66.8%) are already improved by that obtained in our work with several indi-
vidual attributes, and outperformed by our best results, achieved integrating
the three different attribute types2;

• As for the participants to the evaluation contest, our approach was the best
performer in KinFaceW-I and the second in KinFaceW-II dataset, where LIRIS
was the optimal one; in general our method showed global performances similar
to the LIRIS methods, achieving the best average result on the two datasets
(84.7% versus 84.3% of LIRIS).

Another interesting result, not shown in details for the sake of brevity, is that
the various steps of our FS approach provide an effective improvement of the classi-
fication accuracies. For instance, in the optimal case (TPLBP-LPQ-WLD) the final
accuracies are about 6% higher than that obtained with the first FS step (mRMR)
and about 18% higher that that obtained without applying FS. Another result is

2It should be noted that all participants to the evaluation contest achieved the same result
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5.3 – Results and discussion

Table 5.2: KinFace-II accuracies (%)

F-D F-S M-D M-S Mean
FPLBP 73.8 67.0 69.4 70.0 70.1
TPLBP 70.0 73.6 68.8 77.2 72.4
LPQ 80.8 81.8 78.0 77.6 79.6
WLD 78.8 77.4 78.6 78.4 78.3
FPLBP-LPQ 80.8 79.6 78.2 78.6 79.3
TPLBP-LPQ 78.4 80.8 78.6 80.6 79.6
FPLBP-WLD 78.6 78.4 79.4 80.6 79.3
TPLBP-WLD 77.6 79.2 80.0 80.8 79.4
LPQ-WLD 82.6 81.0 80.0 82.0 81.4
FPLBP-LPQ-WLD 80.6 81.8 81.0 81.2 81.2
TPLBP-LPQ-WLD 82.2 84.0 81.2 84.8 83.1
SILD (LBP) 70.0 78.2 67.8 71.2 71.8
SILD (HOG) 71.6 79.6 69.6 73.2 73.5
LIRIS 89.4 83.6 86.2 85.0 86.0
ULPGC 85.4 75.6 75.6 81.6 80.0
NUAA 84.4 81.6 82.8 81.6 82.5
BIU 87.5 80.8 79.7 75.6 80.9
Human Panel 61.0 61.0 73.0 69.0 66.8

that, in attribute groups, the feature variable chosen by FS belongs, in different per-
centage, to all of the group components. For instance, the average percentage, over
all dataset and kin groups, of variables per type in the optimal attribute combination
is about 50% for WLD, 20% for TPLBP and 30% for LPQ.

Concluding, we have shown that our approach is capable of recognizing different
type of child-parent relationships with reasonable accuracies and providing optimal
performances with respect to other methods. In particular, the multi-perspective ap-
proach proposed has been found effective in strengthening the discriminative power
of individual attributes by gathering, after a proper selection, different and comple-
mentary information that helps better characterizing the analyzed samples.
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Figure 5.3: ROC curves for TBLPB-LPQ-WLD (our method), for different ap-
proaches and for the baselines provided by the event organizers (SILD). The top
(a-d) and bottom (e-h) rows present the results obtained from the KinFaceW-I and
KinFaceW-II, respectively. Each column shows the results on a given dataset, ac-
cording to the kin relationship of the samples.
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Chapter 6

Conclusion and Future Work

This thesis has presented the use of feature level fusion in two recent research ap-
plications aimed at improving the system classification accuracy together with the
use of several pattern analysis and image processing techniques. In the literature
match level and decision level fusion have been extensively studied, whereas feature
level fusion is a relatively understudied problem because of the difficulties inherent
to its correct implementation. Nevertheless, it is believed that fusing features at
this stage would retain a richer source of discriminative information. If employed,
subsequently, feature level fusion would need a careful reduction of features that
would decide the most representative and discriminative feature sets for the pat-
terns to classify. With this motivation we utilized feature level fusion for two recent
pattern recognition problems, achieving significant level of performance as compared
to other methods in the literature.

For a multi-class problem, HEp-2 staining pattern classification in IIF images,
we devised an automated solution that benefit from feature level fusion and is based
on Subclass Discriminant Analysis approach. The main findings of our work are two.
First, after investigating the contribution of several types of attributes, individually
and then grouped at feature level, we obtained an optimal set of features that
combines morphological descriptors with global and local textural analysis based on,
respectively, GLCM and CoALBP features. With this set of attributes we achieved
classification accuracy close to 90%, showing that the integration of information
of different nature provides an effective representation of the fluorescence patterns.
Furthermore, the classification accuracy was stable in a neighborhood of the optimal
set size, indicating a good robustness of the proposed approach. Second, we verified
that the proposed SDA-based strategy can effectively cope with the high within-
class variance of HEp-2 samples and, coupled with a Feature Selection process, can
provide a compact set of image attributes that is highly discriminative and effective
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for the classification task.

Similarly in a two class problem, we presented an approach for the computer
identification of parent-child pairs from the facial images of two individuals. Indi-
vidual images were characterized by different facial attributes, related to geometric,
local and global textural data. These attributes were first analyzed individually and
then fused together at feature level to build, with the contribution of a robust two
step feature selection algorithm, different SVM classifiers. Simulation results show
that the integration of features of different natures is indeed an effective solution
to the automatic kinship verification problem. Our approach achieved, on the same
data, significantly higher accuracies than those obtained by panel of human raters
and previous approaches in the literature. We have also shown the good generaliza-
tion capabilities of our approach through challenging cross-database experimental
settings.

In another work, we addressed the problem of kinship verification in an un-
constrained environment. We adopt a similar approach and use a dataset where
the photographs contain a large heterogeneity, with unconstrained face orientations,
expressions and occlusions. Here, our multi-perspective strategy consists in consid-
ering different textural features and extracting the variables that are more relevant
to the problem using feature selection. The results of our experiments suggests
that the combinations of different types of attributes, capable of describing the data
under different perspectives, is a strategy to better characterize the samples and,
ultimately, to improve the classification accuracy. We have also shown, through the
comparison with other methods on the same data, that our approach is optimal and,
furthermore, capable of largely outperforming the human capabilities of recognizing
kin.

All relevant results presented in this thesis are published in [55, 85, 10, 11, 12]

As future works, we would like to improve our proposed solutions for the current
problems. We are planning to implement a complete solution tackling all the steps
of an automated IIF analysis, including the quantification of the staining intensity,
the cell segmentation and the recognition of the mitotic cells. Further improvements
of the SDA-based solution will be also investigated, e.g. by experimenting different
types of classifiers other than k-NN. We are also planning to address the multi-class
problem of simultaneously identifying different degrees of kinship (e.g., parent-child,
siblings and grandparent-grandchild), a problem which has not yet been tackled
in the literature. As suggested in Section 4.4.2, we will also investigate methods
capable of effectively coping with the high within-class variance of the kin samples.
Another point of interest is to fully analyze how factors such as ethnicity, expressions,
gender and age affect a kinship predictor, and possible approaches to alleviate such
influences. Recently a work [30] introduced the problem of kinship verification from
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dynamic expressions, which opens a new dimension worth to be explored.

Despite the possibility for a range of future extensions to our work, we think that
a multi-perspective approach through feature level fusion is relevant and should be
deeply analyzed when addressing these novel areas of research. Having, said that
similar approaches based on feature level fusion can also be developed for other
related and recent applications, including, but not limited to Fingerprint Liveness
detection [138] and 2D face Anti-Spoofing [137]. More interestingly, data fusion at
feature level for computer vision and pattern recognition applications can also be
integrated within other recent frameworks e.g. multi-task learning, sparse coding
and deep learning and will be a focus of our future research work.
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